Мичуринский государственный аграрный университет
Мичуринск -Наукоград
Юг-Полив

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективностьГудковский В.А.

Гудковский В.А., доктор сельскохозяйственных наук, академик РАСХН.*
Кожина Л.В.*
Балакирев А.Е.*
Назаров Ю.Б.*
Урнев В.Л. **
*ГНУ ВНИИС им. И.В. Мичурина, Россия.
** ОАО «Агроном» Липецкая область, Россия.

Ключевые слова: плоды, сорта яблони, условия хранения, обычная (ОА), регулируемая (РА), модифицированная (МА) атмосфера, 1-метилциклопропен, этилен, α-фарнезен, триены, антиоксиданты, загар.

Влияние условий хранения на поражаемость загаром и качество плодов яблони средней зоны России.

Чаще всего спрос на плоды в средней зоне садоводства России возрастает с середины декабря и продолжается до мая (3 — 8 месяцев хранения), при этом нет гарантии полной реализации продукции. Отсутствие спроса связано в первую очередь с низким товарным качеством плодов, высокой ценой и наличием на рынке импортных яблок (Польша, Китай, Молдавия, Украина и др.) с более привлекательным для населения соотношением цена/качество.

Следует полагать, что после вступления в ВТО садоводство России окажется в еще более жесткой конкурентной среде. Необходимыми условиями противостояния вызовам международного рынка являются повышение качества производимой продукции, ее оперативной подачи в различные регионы страны в необходимые сроки, экономически обоснованное использование различных технологий хранения.

Как известно, качество плодов и их лежкоспособность формируется под влиянием комплекса биологических, экологических, агротехнических, организационно-экономических и послеуборочных факторов (условия хранения, товарной обработки, реализации плодов и др.) [1,2]. Нарушения в любом звене этой системы приводят к снижению эффективности конечного результата.

Как показывает практика, создание современных холодильников и садов без освоения новейших знаний по управлению процессами жизнедеятельности плодов на всех этапах: сад – хранение – доведение до потребителя, также не гарантирует получение высокого конечного результата.

Жизнь плода, как любого биологического объекта – ограничена, поэтому важно для эффективного ведения производства сохранить товарные качества продукции при минимальных потерях.

Основные потери при хранении плодов: от физиологических  заболеваний (загар, подкожная пятнистость, побурение сердцевины и мякоти, разложение и др.) и грибной инфекции (глеоспориозная, плодовая гниль, серая плесень и др.); убыль массы при дыхании и транспирации; потери качества (снижение твердости, ухудшение внешнего вида, вкуса, аромата и др.). Существующие технологии хранения — обычная, регулируемая (со стандартным >1,5%, ультранизким 0,8-1,2 % и еще более низким — 0,4-0,6% содержанием кислорода), модифицированная атмосферы имеют свои преимущества и недостатки, отличаются по затратам на их осуществление, но не обеспечивают в полной мере защиту от потерь [3-8].

Освоение крупными плодоводческими хозяйствами новых технологий, сочетающих хранения плодов в ОА, РА с послеуборочной обработкой плодов ингибитором биосинтеза этилена 1-метилциклопропеном (1-МЦП, препарат «Smart Frech», США, Фитомаг®, Россия) позволяет значительно снизить потери от заболеваний, сохранить качество плодов [1-10]. При этом, даже в рамках одной технологии существенное влияние на конечный результат оказывают условия хранения (температура, содержание СО2, О2, этилена).

Механизмы поражения плодов основными видами физиологических заболеваний различны, однако выявлены и общие закономерности: восприимчивость к каждому из них в различной степени зависит от минерального, гормонального и антиоксидантного баланса плода, его физиологического состояния.

Наши многолетние исследования и результаты других специалистов подтвердили, что восприимчивость плодов к загару определяется генотипом сорта, в меньшей степени загаром поражаются плоды, снятые в оптимальные сроки, с высоким содержанием антиоксидантов, кальция и сбалансированным содержанием других элементов минерального состава [1,11-14]. Однако, на лежкоспособность плодов (даже очень высокого качества) существенное влияние оказывают условия хранения.

Для мониторинга физиологического состояния плодов широко используются такие биохимические показатели, как эндогенный этилен, α-фарнезен, продукты окисления фарнезена (КТ281) и твердость, которые позволяют не только оценить качество плодов, но и выявить вероятность развития физиологических заболеваний, которые составляют основную долю  потерь при хранении плодов.

В связи с вышеизложенным, целью наших исследований является: 1) выявление роли биохимических показателей в развитии загара плодов яблони; 2) изучение влияния условий хранения на качество плодов средней зоны садоводства России для экономически обоснованного применения разработанных технологий хранения.  

МЕТОДИКА И МАТЕРИАЛЫ ИССЛЕДОВАНИЯ

Исследования выполнены в 2009-2011 гг. Объекты исследований – 2 сорта яблони: Мартовское, Синап Северный. Съем плодов проводили в промышленных насаждениях, при содержании эндогенного этилена 0,8-1,5 ppm, хранили – в производственных фруктохранилищах с обычной и регулируемой атмосферой (ОАО «Агроном» Липецкой области), использованы результаты исследований, проведенных в  ЗАО «15 лет Октября». Биохимические исследования выполнены в лаборатории отдела послеуборочных технологий ГНУ ВНИИС им. И.В. Мичурина (г. Мичуринск). Содержание этилена — определяли газохроматографически (GC-2014, SHIMADZU, Япония) [15], α-фарнезена и продуктов его окисления – спектрофотометрически (СФ-201, Россия) [16], содержание суммы фенольных соединений (СФС), рутина – спектрофотометрически [17] твердость плодов измеряли пенетрометром FT-327 с плунжером для яблок.

Часть плодов в день съема обрабатывали ингибитором этилена препаратом Фитомаг®, по разработанной во ВНИИС им. И.В. Мичурина технологии. Контрольные и обработанные плоды закладывали на хранение в камеры с обычной и регулируемой атмосферой (таблица 1).

Таблица 1. Условия хранения в различных вариантах опыта.

ОА*+контроль +2±0,5 0,03 21 5-14,5
ОА+МЦП
1-РА+контроль +2±0,5 3-4 16-18 38-78
1-РА+МЦП
2-РА+контроль +2±0,5 1,2 1,2 10-40
2-РА+МЦП
3-РА+контроль +2±0,5 1,2 1,2 45-133
3-РА+МЦП

ОА* — обычная атмосфера  — высокий уровень содержания кислорода и минимальный — углекислого газа (О2 -21%, СО2 -0,03%), экзогенный этилен 5,2-14,3 ppm);

1-РА — односторонне регулируемая атмосфера  – высокий уровень содержания кислорода (О2 -16-17%), повышенный — углекислого газа (СО2 -3-4%); экзогенный этилен – 38-78 ppm;

2-РА — регулируемая атмосфера с ультранизким содержанием кислорода  — СО2 -1,2%; О2 -1,2%, экзогенный этилен –10-40 ppm;

3-РА — регулируемая атмосфера с ультранизким содержанием кислорода  — СО2 -1,2%; О2 -1,2%, высокий уровень экзогенного этилена – 45-133 ppm.

Температуру хранения поддерживали на уровне +2 ±0,5оС.

Уровень этилена (С2Н4) в окружающей среде контролировали еженедельно. Динамика содержания экзогенного этилена в различных условиях хранения представлена на рисунке 1.

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективностьРисунок 1. Содержание экзогенного этилена в различных условиях хранения.

Для выявления роли экзогенного этилена были проведены специальные исследования, с использованием полиэтиленовых пакетов (модифицированная атмосфера – МА). (Таблица 2).

Таблица 2. Условия хранения в различных вариантах опыта.

Мартовское
ОА+контроль +2±0,5 0,03 21 0,8-1,5
ОА+МЦП
МА+контроль +2±0,5 4,5-8,9 14-18 107-280
МА+МЦП +2±0,5 3-5 16-19 1,8-4,8
МАсмесь+контроль +2±0,5 6-10 12-18 124-286
МАсмесь+МЦП
Богатырь
ОА+контроль +2±0,5 0,03 21 0,8-1,5
ОА+МЦП
МА+контроль +2±0,5 3,5-9 15-18 74-145
МА+МЦП +2±0,5 3,5-5 16-19 8-25
МАсмесь+контроль +2±0,5 3-6 16-19 47-120
МАсмесь+МЦП

Для создания МА использовали пакеты Xtend израильской фирмы «StePac». Объекты исследования: плоды сорта Мартовское и Богатырь, содержание эндогенного этилена при съеме 0,1-0,3 ppm. Варианты опыта: МА+контроль, МА+1-МЦП, МА-смесь (в один пакет были заложены плоды обработанные ингибитором биосинтеза этилена и без обработки). Условия хранения плодов представлены в таблице 2.

Степень поражения плодов загаром оценивали в течение 6 месяцев и дополнительно после 1 и 7 дней хранения  при +20оС в соответствии с ГОСТ 21122-75.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

В результате проведенных исследований были получены экспериментальные данные, позволяющие объективно оценить влияние основных факторов хранения — уровня О2, СО2, этилена при пониженной (+2 ±0,5оС) температуре хранения в сочетании с послеуборочной обработкой 1-МЦП и без нее на лежкоспособность двух сортов яблони — Мартовское, Северный Синап.

Различия ответной реакции плодов на условия хранения, до проявления внешних признаков заболеваний, проявились в абсолютном содержании и динамике биохимических показателей (эндогенный этилен, α-фарнезен, продукты окисления α-фарнезена (КТ281), твердость) еще на начальных этапах и стали более очевидными к середине и концу хранения.

Влияние условий хранения на накопление эндогенного этилена в плодах. Влияние эндогенного этилена на качество плодов и развитие загара.

Этилен – гормон созревания. По содержанию этилена в межклеточном пространстве оценивают физиологическое состояние, степень зрелости плодов.

Мартовское. Содержание этилена в плодах увеличивалось по мере их созревания. В целом, в необработанных плодах в первый месяц хранения содержание этилена увеличилось в десятки раз (до 200-400 ppm, против 0,8-1,5 ppm при съеме) и достигало максимальных значений лишь к пятому-шестому месяцу хранения, влияние условий хранения проявилось в уровне накопления этилена (рис.2).

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность

Рисунок 2. Влияние условий хранения на накопление эндогенного этилена в плодах яблони.

Максимально высоким содержанием этилена (более 1200 ppm) в плодах выделились 4 варианта, хранение которых проходило в атмосфере с высоким содержанием кислорода (16-21%), это — ОА+контроль, ОА+МЦП, 1-РА+контроль, 1-РА+МЦП. В варианте 1-РА+контроль высокие уровни эндогенного этилена были отмечены в середине января — 724 ppm, возможно, что максимальные значения этилена приходились на ноябрь-декабрь, когда показания не снимались, а зафиксированное содержание относилось к климактерическому спаду (Рисунок 2).

Более низким содержанием этилена отличались плоды, хранившиеся в условиях низкого содержания кислорода (1,2%) и повышенного – углекислого газа (1,2%), это — варианты 2-РА+контроль, 3-РА+контроль (этилен 300-700 ppm).

В рeезультате исследований подтверждено, что послеуборочная обработка 1-МЦП ингибирует синтез и накопление этилена, при этом условия хранения влияют на продолжительность ингибирования. Так, после четырех месяцев хранения  в ОА и 1-РА различия между вариантами уже не столь очевидны, как в начале опыта  (контроль 696 и 724 ppm, 1-МЦП – 527 и 152 ppm соответственно), далее – различия еще более сглаживаются, а созревание сопровождает интенсивный подъем содержания этилена – до 1300-1600 ppm. То есть, в условиях высокого содержания кислорода (ОА, 1-РА) содержание эндогенного этилена даже в обработанных 1-МЦП плодах, после определенного периода, достигает  уровня необработанных плодов, следовательно, одна обработка, без ингибирующих созревание условий хранения, не может обеспечивать надежное сохранение продукции.

В условиях РА с ультранизким содержанием кислорода различия между контрольными и обработанными плодами были очевидны до конца хранения. Максимальное ингибирование созревания плодов достигалось в условиях 2-РА+МЦП  — на протяжении всего периода хранения содержание изучаемого показателя не превышало 29,3 ppm (контроль – 152-430 ppm), в условиях 3-РА+МЦП содержание этилена в плодах существенно выше – 200-400 ppm (контроль – 400-727 ppm). Возможно, высокий уровень экзогенного этилена (особенно в первый месяц хранения  — до 76 ppm) в условиях 3-РА (рис.1), оказал стимулирующее влияние на накопление эндогенного этилена, в результате и в контрольных и в обработанных плодах содержание показателя существенно выше, чем при хранении в условиях более низкого экзогенного этилена (вариант 2-РА).

Полученные данные позволяют полагать, что наиболее существенное влияние на ингибирование эндогенного этилена оказывает низкое содержание кислорода (1,2 %), повышенное содержание углекислого газа (1,2%), послеуборочная обработка 1-МЦП при совместном воздействии факторов – эффективность ингибирования увеличивается (вариант 2-РА+МЦП). Показано, что высокое содержание кислорода (и при высоком -3-4% и при нормальном -0,03% содержании углекислого газа) стимулирует синтез эндогенного этилена (1-РА, ОА), высокий уровень экзогенного этилена (особенно в первый месяц хранения), также оказывает стимулирующее влияние на внутриплодное содержание этилена (3-РА).

В результате проведенных исследований показано, что эндогенный этилен оказывает прямое влияние на качество плодов. Чем выше его содержание, тем выше степень зрелости, при перезревании — ниже содержание биологически активных веществ, ниже твердость, выше восприимчивость к разложению, внутреннему побурению, грибной инфекции и др. То есть, чем выше содержание эндогенного этилена, тем ниже товарные и потребительские качества плодов.

Роль С2Н4 в развитии загара до конца неясна. Однако, опосредованное влияние гормона на развитие заболевания было выявлено в результате собственных исследований и исследований зарубежных авторов [1-4,18-20]. Было показано, что увеличение накопления α-фарнезена происходит только после повышения эндогенного этилена в плодах до физиологически активных концентраций. При съеме плодов чем выше уровень содержания этилена (при поздних сроках съема, после обработки плодов стимуляторами созревания), тем выше содержание α-фарнезена, но не восприимчивость к загару. Чаще всего увеличение содержания эндогенного этилена после съема плодов сопровождается накоплением α-фарнезена и продуктов его окисления, что приводит к развитию загара. Но известны случаи, когда плоды сорта Антоновка обыкновенная с низким уровнем эндогенного этилена (1,5-5 ppm) содержали высокий уровень КТ281 в кутикуле кожицы 9-15 нмоль/см2, при этом 30-80% плодов были поражены побурением кожицы в условиях холода и 100% — при доведении до потребителя. Таким образом, загаром поражаются плоды с различным содержанием эндогенного этилена (от 5 до 1000 ppm). Вероятно, наряду с эндогенным этиленом, влияют на развитие заболевания и другие эндогенные и экзогенные факторы.

Северный Синап. Содержание эндогенного этилена в плодах этого сорта в 1,5-2 раза ниже, чем у сорта Мартовское. Реакция сорта на условия  хранения в целом совпадает с реакцией сорта Мартовское: максимальный уровень содержания этилена (800 ppm) отмечен в конце хранения (6,5 месяцев) в варианте ОА+контроль, в пяти вариантах –  ОА+МЦП, 1-РА, 3-РА, 2-РА, 1-РА+МЦП содержание этилена после 4,5 месяцев хранения соответствовало 300-550 ppm, причем у двух последних вариантов синтез этилена в течении первого месяца хранения существенно ингибировался (60,2 и 12,3 ppm соответственно), а в варианте 3-РА+МЦП – ингибирование продолжалось до марта (23-148ppm), далее – заметный подъем (350 ppm).

Минимальным содержанием эндогенного этилена, также, как у сорта Мартовское, отличался вариант 2-РА+МЦП — на протяжение всего периода хранения содержание изучаемого показателя составляло от 6 до 46 ppm.

Влияние условий хранения на изменение твердости плодов. Влияние твердости на качество плодов и развитие загара.

Твердость – один из основных объективных показателей для оценки качества плодов. На международном рынке плоды с твердостью ниже 5-6 кг/см2 (в зависимости от сорта) не предлагаются для реализации.

Мартовское. При созревании твердость плодов снижается. Результаты исследований показывают, что факторы хранения, стимулирующие созревание (синтез эндогенного этилена) способствуют снижению твердости, а ингибирующие созревание – сдерживают распад клеточных структур и способствуют ее сохранению. Минимальной твердостью плодов на протяжении всего периода хранения отличались контрольные варианты, хранившиеся в среде с высоким содержанием кислорода и этилена: ОА+контроль, 1-РА +контроль, 3-РА+ контроль. После 5 месяцев хранения содержание показателя было менее 5 кг/см2 , что свидетельствовало о низком товарном качестве, существенно снижало цену и саму возможность реализации этих партий плодов (рисунок 3).

Хранение плодов в среде с ультранизким содержанием кислорода и более низким содержанием этилена (условия 2-РА) обеспечивало даже после шести месяцев сохранение твердости контрольных плодов на уровне 6,6 кг/см2 .

Эффективность послеуборочной обработки 1-МЦП как ингибитора созревания проявляется и в сохранении твердости плодов. Однако в условиях повышенного содержания кислорода твердость обработанных плодов была ниже, чем твердость контрольных плодов в среде с ультранизким его содержанием (1-РА+МЦП, ОА+МЦП —  5,4, 5,6 кг/см2 соответственно, 2-РА+к – 6,6 кг/см2 ). В то же время, плоды двух вариантов, хранившихся в условиях ультранизкого содержания кислорода в сочетании с послеуборочной обработкой 1-МЦП (2-РА+МЦП, 3-РА+МЦП) отличались более высокой твердостью, по сравнению с контрольными плодами и  сохраняли ее на протяжении всего периода хранения — 9,4 и 8,2 кг/см2 соответственно (контроль – 6,6 и 4,3 кг/см2 соответственно), т.е. обработка усиливает положительное влияние РА на сохранение твердости плодов, тем не менее, высокий экзогенный этилен способствует ее снижению (Рис.3).

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность

Рисунок 3. Влияние условий хранения на изменение твердости плодов.

Таким образом, определяющее влияние на твердость плодов оказывает уровень содержания эндогенного этилена, существенному снижению твердости плодов способствовали условия регулируемой атмосферы с высоким уровнем экзогенного этилена и кислорода и условия обычной и регулируемой атмосферы с высоким содержанием кислорода. Послеуборочная обработка 1-МЦП в сочетании с хранением в условиях РА с ультранизким содержанием кислорода и повышенным — углекислого газа, способствовала надежному сохранению твердости как в условиях более низкого, так и повышенного содержания этилена, однако, в атмосфере с пониженным содержанием этилена она была выше.

В результате проведенных исследований было показано, что после четырех месяцев хранения твердость обработанных плодов в ОА сопоставима с контрольными плодами, хранившимися в 2-РА (6,5 и 7,0 кг/см2 соответственно).

Твердость плодов объективно отражает их товарные качества, потребительские свойства и, косвенным образом, степень зрелости (чем выше уровень эндогенного этилена и, следовательно, выше степень зрелости плодов, тем ниже их твердость).

Не установлено прямой связи между развитием загара и твердостью мякоти, при этом в плодах с высокой степенью развития заболевания твердость снижается.

Северный Синап. В целом, твердость плодов сорта Северный синап выше, чем у сорта Мартовское, на протяжении всего периода хранения данный показатель не снижался ниже 5 кг/см2. В результате проведенных исследований получены те же закономерности, что и на сорте Мартовское: максимальное сохранение твердости отмечено в вариантах 2-РА+МЦП, 3-РА+МЦП (9-10 кг/см2), минимальное  — 3-РА+ контроль, ОА+контроль, 1-РА +контроль (5-6 кг/см2).

Влияние условий хранения на накопление α-фарнезена, КТ281 в кутикуле кожицы плодов. Влияние α-фарнезена, КТ281 на качество плодов и развитие загара.

α-фарнезен – непредельный углеводород, окисление которого сопровождается накоплением коньюгированных триенов (КТ). Увеличение содержания КТ с максимумом поглощения 281 нм  до 8 и более нмоль/см2 свидетельствует о возрастающих рисках поражения плодов загаром.

Мартовское, α-фарнезен. Анализ гексановых экстрактов кутикулы кожицы плодов показывает, что во всех условиях хранения в  контрольных и обработанных 1-МЦП плодах содержание  α-фарнезена достигало максимальных значений в первый месяц хранения, различия лишь в уровне его накопления (Рисунок 4).

В результате проведенных исследований было установлено, что максимально высоким содержанием изучаемого показателя (74-83 нмоль/см2) выделились необработанные плоды, хранившиеся в обычной и регулируемой атмосфере, это: ОА+контроль, 1-РА+контроль, 2-РА+контроль, 3-РА+контроль и вариант 3-РА+МЦП, где даже в обработанных плодах условия РА с повышенным экзогенным этиленом вызвали активный синтез углеводорода. Указанные варианты отличались и наиболее резким снижением содержания α-фарнезена (что свидетельствует об активном окислении углеводорода): к четвертому месяцу хранения на 55-70%, к шестому – на 70-80% от первоначального уровня, составляя 14-24 нмоль/см2, что соответствовало 100% поражению необработанных плодов загаром через 7 суток хранения при Т= +18…22оС

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность

Рисунок 4. Влияние условий хранения на накопление α-фарнезена в кутикуле кожицы плодов.

Было показано, что послеуборочная обработка 1-МЦП ингибировала синтез α-фарнезена при всех условиях хранения, но с разной эффективностью, поэтому содержание углеводорода всегда ниже в обработанных партиях, по сравнению с контролем. Так, после месяца хранения содержание α-фарнезена в трех вариантах с послеуборочной обработкой плодов: 1-РА+МЦП, 2-РА+МЦП и ОА+МЦП было ниже на 30-50%, по сравнению с контрольными (74-83 нмоль/см2). К четвертому месяцу хранения, в обработанных плодах, хранившихся в условиях регулируемой атмосферы, также, как и в контрольных, было отмечено снижение содержания непредельного углеводорода, но менее интенсивное – на 30-40%, через 6,5 месяцев хранения – на 50% от первоначального уровня, составляя 18-28 нмоль/см2, потери от загара в этих партиях составляли 90, 7 и 0% соответственно. Как было показано, к концу хранения содержание α-фарнезена в контрольных и обработанных  плодах находилось приблизительно на одном уровне 14-28 нмоль/см2, а потери от загара в этих партиях составляли от 0 до 100%. т.е. потери от заболевания не находятся в прямой зависимости от содержания α-фарнезена, однако, чем выше уровень его накопления, тем выше вероятность его окисления и поражения плодов загаром.

Более низкий уровень накопления и спокойная динамика изменения содержания углеводорода в обработанных 1-МЦП плодах соответствовали их относительно более устойчивому состоянию, низкой (по сравнению с контрольными вариантами) восприимчивости к загару.

В результате многолетних исследований установлено, что в плодах, пораженных загаром содержание α-фарнезена может составлять 15, 30, 50 нмоль/см2. При максимальных значениях показателя (более 70 нмоль/см2), загар чаще всего не обнаруживается, а проявляется после его снижения. Вероятно, что нет прямой зависимости между уровнем содержания α-фарнезена и возникновением  загара, однако чем выше уровень накопления α-фарнезена, тем выше вероятность его окисления и поражения плодов заболеванием. Данные по уровню содержания и интенсивности снижения α-фарнезена могут быть рассмотрены в качестве дополнительных прогностических характеристик плода при оценке их восприимчивости к заболеванию. Очевидно, наряду с эндогенным этиленом и α-фарнезеном, участвуют в регулировании развития загара и другие эндогенные и экзогенные факторы.

Содержание α-фарнезена, вероятно, не влияет на товарное качество плодов.

КТ281. Содержание триенов (КТ281) увеличивалось по мере окисления α-фарнезена и появления загара, и снижалось в плодах с максимальной степенью развития заболевания, распадом тканей паренхимы. Логично, что максимальное содержание КТ281 после одного месяца хранения было отмечено в плодах вариантов, накопивших максимально высокое содержание α-фарнезена, это – 1-РА+контроль, 2-РА+контроль, 3-РА+контроль и ОА+контроль (19,7, 12,6, 12,0 и 10,4 нмоль/см2 соответственно) (Рисунок 4,5).

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность

Рисунок 5. Влияние условий хранения на накопление КТ281 в кутикуле кожицы плодов.

Высокие уровни триенов в кутикуле кожицы указывали на высокую предрасположенность плодов выделенных вариантов к загару. И, действительно, в варианте 1-РА+контроль, с максимальным содержанием КТ281 отмечено раннее появление загара: уже в 1 декаде ноября потери составили 30%, увеличиваясь в комнатных условиях до 60% (в других вариантах потери либо отсутствовали, либо не превышали 5%). К середине января два варианта, отличающиеся высоким уровнем содержания кислорода в атмосфере (1-РА+контроль и ОА+контроль) отреагировали на сложившиеся условия хранения  активным синтезом триена (36,7 и 39,6 нмоль/см2 соответственно), что совпадало с резким увеличением потерь от загара (90-100% в комнатных условиях), далее – очень резкое снижение его содержания, более выраженное в условиях 1-РА (рисунок 4), что соответствовало максимальной интенсивности загара, сопровождающееся распадом клеточных структур (твердость 4,7-4,8 кг/см2). Следует отметить, что при равно высоких уровнях накопления α-фарнезена и КТ281 в плодах вариантов 1-РА+контроль и ОА+контроль, в условиях ОА загар появляется позднее по срокам (на месяц), потери после четырех месяцев хранения на 50% ниже и степень проявления существенно ниже, чем в 1-РА. Вероятно, существенное влияние на развитие заболевания оказывают и другие эндогенные факторы, в том числе антиоксиданты (влияние антиоксидантов на развитие загара будет рассмотрено в соответствующем разделе статьи).

В результате многолетних исследований были получены неоспоримые доказательства того, что у многих  изучаемых сортов (Антоновка обыкновенная, Мартовское, Синап Орловский, Северный Синап, Богатырь) величина потерь и интенсивность развития загара в 1-РА всегда выше, чем при других условиях хранения.

Анализ большого массива данных показывает, что при содержании в кожице плодов КТ281 в пределах 10 нмоль/см2 (особенно в первые 1-2 месяца хранения) загара может еще и не быть. Вероятно, для определенных сортов и партий плодов, должен пройти некоторый период времени с момента обнаружения критических уровней содержания КТ281 до появления загара (возможно, анатомическая структура и биохимический состав кожицы влияет на сроки и степень поражения заболеванием), но уже тогда необходимо принимать решение о сроках реализации партии.

Послеуборочная обработка 1-МЦП во всех условиях хранения (1-РА, 2-РА, 3-РА, ОА) ингибировала накопление триенов (КТ281) в кожице плодов на 50-80%, по сравнению с контролем. Так, после месяца хранения содержание КТ281 в обработанных партиях не превышало 5 нмоль/см2, после 4 месяцев — 10 нмоль/см2, стабильно более низким содержанием КТ281 в течение всего периода хранения отличался вариант 2-РА+МЦП (3,5-6,9 нмоль/см2), что свидетельствовало об устойчивости плодов к загару.

В вариантах 2-РА+контроль, 3-РА+контроль содержание КТ281 было примерно на одном уровне: после одного месяца хранения — 12,6 и 12,0 нмоль/см2 соответственно, при дальнейшем хранении максимальное содержание показателя увеличилось — 14,9 и 18,6 нмоль/см2 соответственно. Полученные значения существенно ниже, чем в 1-РА и ОА, при этом потери от загара в вариантах 2-РА+контроль, 3-РА+контроль появились на 1,5-2 месяца позднее, чем в 1-РА, а уровень потерь от заболевания в рассматриваемых вариантах ниже, чем в 1-РА и ОА. Полученные экспериментальные данные еще раз подтверждают ингибирующее влияние ультранизкого содержания кислорода -1,2 % (2-РА, 3-РА) на накопление продуктов окисления α-фарнезена и развитие загара, по сравнению с хранением в условиях повышенного содержания О2 (ОА,1-РА).

В результате проведенных исследований выраженных различий по влиянию условий хранения 2-РА и 3-РА на накопление триенов и развитие загара контрольных и обработанных партий плодов – не обнаружено. Очевидно, этому есть логичное объяснение: при прочих равных условиях (температура, СО2, О2), хоть различия по содержанию экзогенного этилена и существуют (Рис. 1), однако, в обоих случаях, содержание этилена существенно превышало физиологически активные концентрации гормона (5 ppm), что позволило нам выявить лишь некоторые тенденции его влияния на состояние продукции. 

Для выявления роли экзогенного этилена на биохимические показатели и развитие загара плодов были проведены специальные исследования в условиях обычной и модифицированной атмосферы. По содержанию основных газов модифицированная атмосфера близка к условиям 1-РА (СО2 -3-9%, О2 -13-20%). Благодаря послеуборочной обработке ингибитором этилена удалось смоделировать атмосферу с низким содержанием экзогенного этилена — вариант МА+МЦП (в пакетах сорта Мартовское -1,8-4,8 ppm, Богатырь — 8-25 ppm). Высокий уровень содержания С2Н4  был получен при хранении в пакетах необработанных плодов — МА+контроль, МА-смесь (в пакетах сорта Мартовское – 107-286 ppm, Богатырь – 47-145 ppm). В условиях ОА содержание экзогенного этилена на протяжении всего периода хранения составляло 0,8-1,5 ppm (Рис. 6).

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность

Рис. 6. Содержание экзогенного этилена в различных условиях хранения.

В результате проведенных исследований еще раз подтверждено, что максимальной интенсивностью созревания и, следовательно, более низкой твердостью отличаются необработанные плоды в условиях ОА. В условиях МА, за счет повышенного содержания СО2 процесс созревания (накопления эндогенного этилена) сдерживается до момента, пока высокий экзогенный этилен в атмосфере пакета (107-286 ppm), активируя синтез эндогенного этилена, сведет к минимуму различия между вариантами. Так, через 3 месяца хранения плодов сорта Мартовское содержание эндогенного этилена в вариантах ОА+контроль (ОА+к), МА+контроль (МА+к), МА-смесь+контроль (МАсм+к) составляло 389,9, 214,4 и 223,7 ppm, твердость – 6,0, 6,7 и 6,8 кг/см2, через 4,5 месяца хранения содержание показателей изменилось следующим образом: содержание эндогенного этилена составило 450,0, 170,2 и 148,6 ppm, твердость — 5,1, 4,9 и 4,8 кг/см2 соответственно (Рис.7,8).

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность

Рисунок 7. Влияние условий хранения на накопление эндогенного этилена в плодах яблони.

Снижение содержания эндогенного этилена в плодах, а также низкие показатели твердости мякоти плодов после 4,5 месяцев хранения в МА свидетельствует о постклимактерическом этапе их жизни (периоде старения), очевидно, что интенсификация процессов созревания после 3 месяцев хранения, была вызвана высоким экзогенным этиленом.  Таким образом, условия МА для контрольных плодов обеспечивают некоторые преимущества по сохранению твердости и сокращению потерь массы на ограниченном временном промежутке (1-4 месяца, в зависимости от сорта и физиологического состояния), далее – различия сглаживаются. Вероятно, накопление эндогенного этилена (процесс созревания) обусловлено, прежде всего, его автокатализом, однако экзогенный этилен может стимулировать синтез эндогенного и наоборот, что ограничивает использование МА для хранения плодов.

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность

Рисунок 8. Влияние условий хранения на твердость и убыль массы плодов.

Как и в ранее рассмотренном опыте, максимальным содержанием КТ281 и высокой восприимчивостью к загару отличались контрольные плоды сорта Мартовское, хранившиеся в атмосфере с повышенным содержания кислорода и этилена. Так, через 3 месяца хранения в вариантах ОА+к, МА+к, МАсм+к содержание триена составляло 18,0, 28,3 и 26,4 нмоль/см2, потери от загара — 38,4, 75,6 и 80% соответственно. Т.е условия МА стимулировали накопление КТ281, повышали восприимчивость к загару. Учитывая, что уровень содержания кислорода в атмосфере ОА и МА находится на сопоставимо высоких уровнях (12-21%), в то время как физиологические проявления (подавление созревания) начинаются в плодах при снижении О2  до 7% и ниже, то, как показывают результаты наших исследований, существенным фактором, влияющим на содержание продуктов окисления α-фарнезена может быть уровень содержания экзогенного этилена. В нашем опыте  в условиях МА (плоды сорта Мартовское) уровень содержания гормона в 100 раз и более выше, чем в ОА – 255 и 1,5 ppm, содержание триенов – 28,2 и 18,0 нмоль/см2, потери от загара – 75,6 и 38,4% соответственно, интенсивность развития загара в МА также существенно выше, чем в ОА (Рис. 6,9,10). В ранее рассмотренном опыте (сорт Мартовское) различия по содержанию экзогенного этилена в атмосфере 1-РА и ОА менее выражены – в 4-6 раз, но по содержанию КТ281, потерям и интенсивности развития загара – существенны. Важную роль экзогенного этилена в развитии загара доказывает следующий пример, после 4,5 месяцев хранения контрольных плодов сорта Северный синап в ОА с низким (1,5 — 2,5 ppm) и высоким (50,0 – 200,0 ppm) уровнем экзогенного этилена (в камере), содержание КТ281 составляло 2,92 и 34,7 нмоль/см2, потери от загара — 0,2 и 100% соответственно. Аналогичные данные получены на сортах Антоновка обыкновенная, Мартовское.

При видимых различиях между вариантами МА+к, МАсм+к по содержанию экзогенного этилена они также не были существенны, как и между вариантами 2-РА и 3-РА. Это нашло свое отражение в близких значениях биохимических показателей, характеризующих состояние плодов и одинаково высокой восприимчивости этих партий к загару (Рис.7-10).

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность

Рисунок 9. Влияние условий хранения на накопление КТ281 в кутикуле кожицы плодов.

В результате проведенных исследований было показано, что послеуборочная обработка 1-МЦП обеспечивает эффективное ингибирование созревания плодов в условиях обычной (ОА+МЦП), модифицированной атмосферы с низким (МА+МЦП) и высоким содержанием экзогенного этилена (МАсм+МЦП). Так, через 3 месяца хранения плодов сорта Мартовское содержание эндогенного этилена составляло 44,7, 7,0 и 5,6 ppm, твердость – 7,8, 9,0 и 8,8 кг/см2 соответственно. После 4,5 месяцев хранения ситуация заметно изменилась: содержание эндогенного этилена увеличилось во всех вариантах, однако его наиболее активный синтез был вызван высоким экзогенным содержанием гормона — 160,8, 100,3 и 415,4 ppm, твердость плодов составила – 6,8, 8,1 и 6,4 кг/см2 соответственно. Т.е. условия МА (повышенный уровень СО2) в сочетании с обработкой 1-МЦП в течение 1-4 месяцев (в зависимости от сорта, исходного физиологического состояния и др.), могут обеспечивать ингибирование созревания и сохранение твердости, далее – различия сглаживаются, особенно в условиях высокого экзогенного этилена, что свидетельствует о нецелесообразности использования МА (даже в сочетании с 1-МЦП) для продолжительного хранения сортов, восприимчивых к загару. В то же время показано, что при низком содержании эндогенного и экзогенного этилена реально контролировать качество плодов (зрелость, твердость, загар), что может быть реализовано в рамках перспективной технологии ДРА[4-8]. Низкий уровень содержания кислорода — 0,4-0,6%, ингибирует синтез этилена в плодах (находящихся в предклимактерической стадии созревания) и атмосфере, синтез и окисление α-фарнезена и, следовательно, развитие загара. Однако наряду с преимуществами, технология ДРА имеет и недостатки, что ограничивает ее использование в мировой практике [4-8].

Заметным положительным проявлением 1-МЦП является сохранение одинаково высокой твердости плодов при низком и высоком содержании экзогенного этилена, однако это продолжается только до тех пор, пока удается ингибировать синтез эндогенного этилена.

Важным результатом исследований являются данные о том, что в кожице обработанных 1-МЦП плодов, хранившихся в атмосфере с низким уровнем экзогенного этилена (1,8-4,8 ppm) ниже содержание продуктов окисления α-фарнезена и выше устойчивость к загару, по сравнению с плодами, хранившимися в среде высоким содержанием гормона (124-286 ppm). Так, после двух месяцев хранения в плодах сорта Мартовское вариантов МА+МЦП и МАсм+МЦП  содержание КТ281 составляло – 9,5 и 14,7 нмоль/см2, потери от загара в условиях холода отсутствовали, через сутки в комнатных условиях составляли 0 и 60%, через 7 дней – 50 и 100% соответственно (Рис. 9, 10).

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность

Рисунок 10. Влияние условий хранения на потери от загара.

Вероятно, повышенное содержание этилена и, возможно, других мало летучих соединений в атмосфере, может стимулировать процессы, приводящие к накоплению триенов и повышению восприимчивости плодов к загару даже в обработанных 1-МЦП партиях. Вывод  подтверждают экспериментальные данные, полученные на плодах сорта Богатырь, хранившихся в условиях МА (Рис. 6-10), а также в РА с ультранизким содержанием кислорода. Так, из семи камер (150-170 т) с обработанными 1-МЦП плодами после 6,5  месяцев хранения  высокие потери от заболевания (27-37% — в камере и 95-100% — через 7 суток в комнатных условиях) были обнаружены в двух камерах, с высоким содержанием экзогенного этилена (81-169 ppm). В других камерах (экзогенный этилен до 10 ppm) – заболевание ни при хранении, ни при доведении до потребителя не проявлялось. Высокий уровень накопления этилена в камерах был связан с тем, что 75% объема камеры занимали плоды сортов Ветеран и Куликовское, отличающихся высокой интенсивностью выделения этилена, низкое содержание этилена поддерживалось при хранении одного сорта Богатырь, плоды которого были обработаны 1-МЦП.

Полученные данные подтверждают наши выводы о нецелесообразности хранения в одной камере плодов нескольких сортов и даже одного сорта, но с различной степенью зрелости. Для сохранения высокого качества плодов (вкус, твердость сочность отсутствие загара и др.) содержание этилена в плодах и атмосфере камеры необходимо поддерживать на уровне не более 5 ppm.

В результате исследований было доказано, что экзогенный этилен оказывает существенное влияние на качество плодов. Чем выше его содержание, тем выше содержание эндогенного этилена и выше степень зрелости плодов, особенно в условиях повышенного содержания кислорода. В стареющей продукции снижается содержание биологически активных веществ, твердость, повышается их восприимчивость к разложению, внутреннему побурению, грибной инфекции и др. То есть, чем выше содержание экзогенного этилена, тем выше содержание эндогенного этилена (и наоборот), тем ниже товарные и потребительские качества плодов. Экзогенный этилен способствует накоплению КТ281 и развитию загара. Установлено, что постоянное поддержание низкого уровня этилена (<1ppm) в камере с РА и внутри плода (0,1- 1,0 ppm) эффективно сдерживает биосинтез α-фарнезена и продуктов окисления и обеспечивает защиту плодов многих сортов от загара и других физиологических заболеваний, способствует сохранению твердости, сочности, вкусовых и товарных качеств[3,4,18,19].

Таким образом, условия хранения оказывают существенное влияние на накопление КТ281 в кутикуле кожицы плодов. Хранение плодов в среде с высоким содержанием кислорода (ОА, 1-РА, МА) – активирует накопление триенов. Высокий экзогенный этилен (возможно и другие летучие соединения) способствует накоплению КТ281 и развитию загара (1-РА, МА), чем выше его содержание, тем выше восприимчивость плодов к заболеванию. Сочетание высоких уровней экзогенного этилена и кислорода (1-РА, МА) приводит к ранним срокам появления и высоким уровням накопления КТ281, проявляющееся в побурении кожицы. Послеуборочная обработка плодов этих вариантов 1-МЦП на определенный период  времени (в зависимости от сорта) ингибирует накопление КТ281 и развитие загара. Ультранизкое содержание кислорода способствует ингибированию накопления и, особенно, окисления α-фарнезена (2-РА), в сочетании с послеуборочной обработкой 1-МЦП эффективность технологии заметно возрастает, т.к. синергетическое действие активных факторов позволяет в определенной степени ингибировать/контролировать фазы развития загара и, следовательно, увеличивать продолжительность хранения сортов с различной восприимчивостью к заболеванию.

Триены (КТ281) — токсичный продукт для клеток кожицы плодов. Его содержание напрямую влияет на развитие загара. Чем выше интенсивность, уровень и чем раньше сроки накопления КТ281, тем выше потери и интенсивность проявления загара на плодах.Однако, уровень содержания триенов, при котором признаки расстройства становятся очевидны, может заметно отличаться. Так, у сорта Моргендуфт загар появляется при содержании КТ281 8 нмоль/см2, у сортов  Мартовское, Гренни Смитт — при более высоком уровне (12-30 нмоль/см2), даже в пределах одного сорта при одном уровне триенов партии плодов могут проявлять различную восприимчивость к заболеванию. Очевидно, что наряду с продуктами окисления α-фарнезена, на развитие загара влияют и другие биохимические соединения кожицы плодов, содержание которых определяется генотипом сорта и комплексом экзогенных и эндогенных факторов.

КТ281. Северный Синап. Уровень накопления α-фарнезена у плодов зимнего сорта Северный Синап в целом существенно ниже, чем у  сорта Мартовское. Особенности сорта в сочетании с условиями хранения в 2-РА и послеуборочной обработкой 1-МЦП способствовали столь глубокому ингибированию синтеза α-фарнезена, что даже через 6,5 месяцев хранения его содержание не превышал 6,4 нмоль/см2.

Уровень накопления КТ281 , как и восприимчивость к загару, у плодов зимнего сорта Северный Синап в целом также существенно ниже, чем у  сорта Мартовское. Максимальным накоплением триенов отличались три варианта: 1-РА+контроль, 3-РА+контроль, ОА+контроль (10-16 нмоль/см2), более низкому уровню накопления способствовали условия 2-РА (6,7 нмоль/см2), где лишь к концу хранения содержание изучаемого показателя достигло  10,7 нмоль/см2.

Послеуборочная обработка во всех условиях хранения (1-РА, 2-РА, 3-РА, ОА) ингибировала накопление триенов (КТ281): до конца хранения (6,5 месяцев) содержание показателя не превышало 6 нмоль/см2, минимальным содержанием (менее 0,6 нмоль/см2 ) в течении всего периода хранения отличался вариант 2-РА+МЦП.

Влияние условий хранения на накопление антиоксидантов в кожице плодов.

Антиоксиданты – это соединения, способные блокировать вредное воздействие на организм свободных радикалов, защищать от заболеваний, старения. К одним из самых эффективных антиоксидантов относятся природные полифенолы, в том числе полифенолы плодов.

Рано снятые плоды отличаются низким содержанием антиоксидантов, у поздно снятых – содержание увеличивается (усиливается основная и покровная окраска, которая зависит в т.ч. от комплекса фенольных соединений), как и возрастает устойчивость к загару (рис. 11). То есть содержание антиоксидантов увеличивается при созревании плодов  на дереве и продолжается этот процесс — в начальный период хранения, что подтверждает роль эндогенного этилена в стимуляции синтеза антиоксидантов (в том числе фенольных соединений), после некоторого периода хранения их содержание снижается [11,19,20]. Существенное влияние на сохранение антиокислительного комплекса могут оказать условия хранения и послеуборочная обработка плодов 1-МЦП.

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективностьРисунок 11. Влияние содержания антиоксидантов (антоцианов) в кожице плодов сорта Мартовское на развитие загара.

Мартовское. В результате наших исследований было показано, что условия хранения, обеспечивающие максимальное ускорение созревания (максимальный уровень эндогенного этилена) стимулируют синтез и накопление антиоксидантов (в первые 6-8 недель хранения) – это условия ОА. Ультранизкое содержание О2 (1,2%), повышенный уровень СО2 (1,2%) и, послеуборочная обработка 1-МЦП заметно ингибируют эти процессы. Так, в вариантах ОА+к и ОА+МЦП суммарное содержание фенольных соединений (СФС) в кожице плодов после трех месяцев хранения составляло 1326,8, 1242, содержание рутина — 320, 241,8 мг/100г сыр.м. соответственно. В условиях РА эти показатели заметно ниже, в вариантах 2-РА+к и 2-РА+МЦП -1151,4, 1100 и 233, 190,1 мг/100г сыр.м. соответственно (Рис. 12).

Как мы неоднократно отмечали, условия 1-РА и МА стимулируют синтез эндогенного этилена, однако, это не приводит к увеличению содержания фенолов, а даже наоборот, способствует снижению их содержания. Вероятно, одной из причин этому — ингибирующее влияние повышенного содержания СО2 на синтез антиоксидантов. Кроме того, не исключена возможность, что фенолы кожицы плодов с первых недель хранения включаются в блокирование реакций свободно-радикального окисления α-фарнезена синтез и окисление которого провоцируют условия 1-РА и МА (высокий экзогенный этилен и кислород). В результате, через 3 месяца хранения содержание СФС и рутина в кожице плодов вариантов 1-РА+к и МА+к было на 30-60% ниже, чем в варианте ОА+к (Рис. 12,13). Послеуборочная обработка 1-МЦП в средах с высоким содержанием кислорода и этилена с одной стороны, ингибируя созревание сдерживала синтез не только фенолов, но и α-фарнезена и продуктов его окисления, защищая тем самым антиоксиданты от разрушения. Так, в кожице плодов вариантов 1-РА+МЦП и МА+МЦП  содержание СФС составляло 982,7, 1106,4, рутина — 176, 194,3 мг/100г сыр.м. соответственно (Рис. 12,13), что на 13-40% выше, чем в контрольных вариантах (1-РА+к, МА+к).

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность

Рисунок 12. Влияние условий хранения на содержание фенольных соединений в кожице плодов.

Содержание фенольных соединений в кожице резко снижается при появлении загара и увеличении интенсивности его развития, что наблюдается во всех условиях хранения. По времени это чаще всего совпадает с мощным синтезом КТ. Так, через 4,5 месяца хранения в вариантах ОА+к, 1-РА+к, 2-РА+к содержание СФС снизилось на 25, 40 и 21%, а содержание рутина – на 35, 76 и 30% соответственно, по сравнению с показателями, полученными после трех месяцев хранения. Потери от загара через 5 месяцев хранения составили 70, 100, 50% соответственно. Максимальное снижение антиоксидантов отмечено в условиях 1-РА, с максимальными потерями от загара.

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность

Рисунок 13. Влияние условий хранения на содержание фенольных соединений в кожице плодов.

Послеуборочная обработка 1-МЦП, сдерживая созревание и синтез фенолов, обеспечивает в какой-то степени сохранение антиоксидантов на протяжении всего периода хранения, за счет ингибирования синтеза и окисления α-фарнезена. Вероятно, по этой причине в вариантах ОА+МЦП и 2-РА+МЦП содержание СФС и рутина после трех и пяти месяцев хранения изменились незначительно, а плоды проявляли устойчивость к загару. В условиях 1-РА даже в обработанных плодах содержание антиоксидантов снизилось на 21, 35% соответственно, а плоды повреждались загаром.

Аналогичные результаты были получены на сорте Мартовское в опыте с ОА и МА (Рис. 13 ).

Таким образом, процессы созревания стимулируют синтез антиоксидантов. В максимальной степени полифенолы накапливаются в условиях ОА, где накопление эндогенного этилена ингибируется только пониженной температурой. Повышенный уровень содержания СО2 (1,2%) и ультранизкое содержание О2, послеуборочная обработка 1-МЦП заметно ингибируют накопление антиоксидантов. Высокий уровень содержания α-фарнезена и продуктов его окисления в кутикуле кожицы плодов приводят к резкому снижению содержания фенолов и высоким потерям от загара.

На основе анализа литературных данных, результатов проведенных исследований установлено прямое влияние антиоксидантов на развитие поверхностного загара плодов яблони[19-23], что подтверждают и следующие примеры. При поздних сроках съема и накоплении естественных антиоксидантов плоды характеризуются низким содержанием триенов (но не α-фарнезена и продуктов его окисления) и высокой устойчивостью к загару, по сравнению с плодами, собранными в ранние сроки, с экстенсивных насаждений, где недостаточный и неравномерный световой режим сдерживает накопление антиоксидантов. Хранение плодов с исходно низким содержанием антиоксидантов, в условиях, сдерживающих их биосинтез (ультранизкое содержание кислорода, повышенный уровень углекислого газа) – резко повышает потери от загара. В этом случае, послеуборочная обработка 1-МЦП, также ингибирующая синтез антиоксидантов, является для плодов дополнительным стрессором, в результате которого она  может оказаться малоэффективной и даже усилить развитие заболевания. Такие факты имели место при хранении в 2-РА плодов сортов Антоновка обыкновенная, Мартовское и Богатырь, снятых в очень ранние сроки (14.08, 17.08 и 19.08 соответственно), через три месяца хранения потери от загара составляли в контрольных партиях 70, 80 и 50%, в обработанных — . 90, 95 и 70% соответственно.

Неоспоримым доказательством определяющей роли антиоксидантов в развитии загара является послеуборочная обработка плодов искусственными антиоксидантами (сантохин, ионол, этоксихин) существенно снижающими потери от заболевания [11,20,21,23]. Искусственные антиоксиданты не ингибируют созревание и синтез α-фарнезена, а сдерживают  накопления КТ281, предохраняя плоды от повреждений. Следует отметить, что партии плодов одного сорта с близким содержанием антиоксидантов могут проявлять различную восприимчивость к заболеванию, что зависит от содержания в кутикуле кожицы КТ281 и, возможно, комплекса других эндогенных и экзогенных факторов. 

Влияние условий хранения на качество плодов, потери от загара.

Качество плодов определяется различными показателями, которые всесторонне характеризуют свойства, потребительскую ценность и их назначение (калибр, форма, окраска, аромат, вкус, свежесть, состояние зрелости, лежкоспособность, дефекты кожицы и мякоти и др.). Основные потери при хранении плодов сорта Мартовское составляют потери от загара (до 100%), в меньшей степени восприимчивы к этому заболеванию плоды сорта Северный Синап. Повреждения, вызванные загаром, существенно сокращают сроки хранения, снижают товарные качества и цену реализации продукции (Рис. 14).

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективностьРис. 14. Загар на плодах сорта Мартовское. РА без обработки 1-МЦП, 5 месяцев хранения.

Появление загара на плодах яблони связывают с рядом последовательных реакций, которые начинаются при созревании плодов в предуборочный период с синтеза в кожице a — фарнезена и заканчиваются в период хранения гибелью эпителиальных клеток, что проявляется в виде внешних признаков этого заболевания – побурения кожицы.

В соответствии с существующей теорией имеется несколько условных фаз развития загара [24,25]. Первая фаза протекает в течение первых 1-2 месяцев после уборки и сопровождается накоплением a — фарнезена в кутикуле кожицы плодов. Наличие в камере хранения этилена усиливает эту реакцию (условия 1-РА, МА, 3-РА  и в меньшей степени 2-РА).

Вторая фаза развития загара характеризуется снижением уровня α-фарнезена, вследствие его самоокисления, и повышением уровня коньюгированных триенов (перекисных радикалов), которые обладают высокой химической активностью и способны дезактивировать белки, окислить липиды мембран, образуя полимеры и нарушая функционирование органелл в клетке. Окисление фарнезена в коньюгированные триены, требует определенного уровня кислорода (условия ОА, 1-РА, МА, и в меньшей степени 2-РА и 3-РА). Этот период продолжается обычно около 1-2 месяцев без каких-либо заметных внешних проявлений.

Третья стадия начинается, когда повреждения ткани становятся достаточными, чтобы вызвать побурение.  Это как раз тот период, когда проявляется защитное действие от обработок антиоксидантами.

Таким образом, необходимыми условиями ингибирования загара в период хранения являются: низкий уровень эндогенного и экзогенного этилена (менее 1-2 ppm) и ультранизкое содержание кислорода. В связи с этим, значительный интерес представляет технология хранения плодов в динамичной регулируемой атмосфере (ДРА), с содержанием кислорода – 0,4-0,6%, в таких условиях ингибируется развитие загара, обеспечивается сохранение высокого качества плодов многих сортов, однако и эта технология имеет недостатки, что ограничивает ее использование [5-8,18,31-33]. Коррекция содержания кислорода в ДРА осуществляется по принципу обратной связи с состоянием продукции, которое отслеживается по флуоресценции хлорофилла, концентрации газообразного этанола, коэффициенту дыхания и другим показателям [8,31-37]. По данным зарубежных исследователей технология с ультранизким содержанием кислорода (0,8-1,5%) в сочетании с послеуборочной обработкой плодов 1-МЦП по эффективности равнозначна ДРА [5,6]. В настоящий период разрабатываются, осваиваются и другие технологии хранения плодов. Эффективным технологическим приемом в защите плодов от загара является снижение содержание кислорода в камере с РА до 0,7-0,8% [5,6,18,26,27,28]. Система хранения плодов SWINGLOS® также обеспечивает защиту от заболевания, суть ее заключается в том, что в первые две недели хранения содержание кислорода в камере поддерживается на уровне 0,25-0,5%, т.е. плоды подвергаются кислородному стрессу (IhOS). В дальнейшем уровень кислорода поддерживается в пределах 1,2-1,5%. Предполагается, что низкокислородный стресс способствует образованию этанола, который может сдерживать окисление a — фарнезена, образование триенов и поражение клеточных структур [22,27,29]. Рассеивание паров этанола в воздухе холодильной камеры в сочетании с хранением в РА также может способствовать  снижению потерь от загара для некоторых сортов яблони [27]. Обработка перед хранением плодов эмульсиями очищенного кукурузного масла ингибировала развитие загара у некоторых сортов яблони и груши. Более низкое содержание α-фарнезена в обработанных плодах видимо связано с его поглощением маслянистыми веществами на поверхности кожицы, а положительное действие на сохранение твердости, зеленой окраски, кислот – с модифицированной внутренней атмосферой, вызванной масляным покрытием [19,30]. Однако, каждая технология имеет свои преимущества и недостатки [4-8,18,19,22,26-37], поэтому необходимо сравнительными испытаниями установить для каких сортов и какого качества плодов, сроков хранения, наличия материально-технической базы, квалификации кадров и для каких сегментов рынка использовать указанные технологии хранения плодов. В одном хозяйстве могут использоваться несколько технологий.

По современным представлениям, поражение плодов загаром определяется своеобразным балансом между уровнем накопления в кутикуле кожицы антиоксидантов (фенольных соединений и др.) и коньюгированных триенов (антиоксиданты/КТ281), чем ниже это соотношение, тем выше вероятность появления загара [4,18,19,20]. Вероятно, в соответствии с предложенной формулой, заболевание появляется в следующих случаях: при изначально низких запасах естественных антиоксидантов (ранний срок съема, ингибирующее воздействие погодных и агротехнических факторов), либо когда они резко снижаются при хранении (на погашение реакций свободно-радикального окисления); при изначально высоком содержании α-фарнезена и триенов (при съеме плодов), что может быть спровоцировано стрессовыми агротехническими (обрезка, удобрения и др.) и погодными условиями (температура, осадки, солнечная активность и др.) при формировании плодов, либо активацией их синтеза в процессе хранения. При одновременном неблагоприятном сочетании факторов, приводящих к снижению индекса антиоксиданты/КТ281, время появления загара сокращается, а его интенсивность усиливается. Отсутствие данных по содержанию антиоксидантов в кожице плодов снижает точность прогноза, но при любом сочетании факторов хранения и содержании КТ281≥ 10 нмоль/см2 (у восприимчивых к загару сортов) риски поражения плодов заболеванием при хранении и доведении до потребителя очень высоки.

В настоящее время наиболее надежным средством защиты, либо существенного сокращения потерь от загара является послеуборочная обработка плодов ингибитором биосинтеза этилена. При этом, как показывают результаты исследований, условия хранения могут настолько серьезно повлиять на лежкоспособность и увеличить восприимчивость плодов к загару, что даже обработка 1-МЦП может оказаться малоэффективной, а хранение необработанных плодов изначально – не целесообразно.

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективностьРис. 15. Влияние условий хранения на поражение плодов сорта Мартовское загаром. 5 месяцев хранения.

Мартовское. 1-РА. В результате проведенных исследований было доказано, что хранение плодов в 1-РА (среды с высоким содержанием кислорода (16-18%) и повышенным содержанием углекислого газа (3-4%), повышенным содержанием экзогенного этилена (38-78 ppm)) не дает абсолютно никаких преимуществ по сохранению качества продукции (вкус, сочность, твердость и др.), но увеличивает потери от загара, даже по сравнению с ОА (рис.15,16). Очевидно, что сочетание активных факторов в 1-РА (высокий этилен, кислород) вызывают биохимические изменения в плодах, приводящие к развитию загара.

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность

Рисунок 16. Влияние условий хранения на потери от загара.

Послеуборочная обработка 1-МЦП в условиях 1-РА также не гарантирует защиту от заболевания. Как мы уже отмечали, в таких условиях хранения (1-РА, МА) много стрессовых факторов, приводящих к разбалансировке гомеостаза. Повышенный уровень СО2 в определенной мере ингибирует созревание (что должно обеспечивать сохранение твердости) и синтез фенолов, но повышенный экзогенный этилен стимулирует созревание и снижение твердости, способствует накоплению α-фарнезена и триенов. Высокий уровень содержания кислорода в среде обеспечивает свободное окисление α-фарнезена. Резкие изменения статуса плодов отразились в биохимических показателях и соотношениях, характеризующих восприимчивость к загару. Индексы загара — СФС/КТ281 и рутин/ КТ281 в варианте 1-РА+контроль через три месяца хранения были минимальными и составляли 45,4 и 7,0 соответственно (что в несколько раз меньше, чем в вариантах ОА+к и 2-РА+к) (Таблица 3). Низким индексам соответствовало раннее появлению загара на необработанных плодах (1 декада ноября – 30%), при доведении до потребителя (7 дней хранения при Т=+20-220С) потери от заболевания составили 60%, в условиях ОА – потери на тот период не обнаружены. Вариант 1-РА+контроль отличался максимальной интенсивностью и 100% поражением плодов загаром уже после трех месяцев хранения. Универсальные свойства послеуборочной обработки  1-МЦП (ингибирование эндогенного этилена, α-фарнезена, продуктов его окисления, ингибирование синтеза антиоксидантов) проявились в 5-кратном увеличении соотношений СФС/КТ281 и рутин/ КТ281 (200,6 и 35,9 соответственно), по сравнению с необработанными плодами, что обеспечивало защиту от загара в течение трех месяцев хранения. В дальнейшем — ингибирующий эффект обработки и антиоксидантная составляющая плодов не обеспечили нейтрализацию свободно-радикального окисления α-фарнезена, индексы загара снизились до 80,1 и 12,2 соответственно, после 4 месяцев хранения 30% плодов варианта 1-РА+МЦП поражались загаром при доведении до потребителя. Дегустационная оценка контрольных и обработанных плодов после 4 месяцев хранения составляла – 1,0 и 2,5 балла, твердость -5,5 и 7,1 кг/см2 , потери от загара при хранении 100 и 0%, при доведении до потребителя – 100 и 30% соответственно.

Таблица 3. Влияние условий хранения, послеуборочной обработки 1-МЦП на индексы загара. Мартовское. 

ОА+контроль 127,6 25,1 30,8 5,2
ОА+МЦП 1035,5 147,3 201,5 23,1
1-РА+контроль 45,4 14,5 7,0 0,9
1-РА+МЦП 200,6 80,1 35,9 12,2
2-РА+контроль 91,4 60,8 18,5 10,9
2-РА+МЦП 314,3 162,5 54,3 29,0

МА. По содержанию основных газов модифицированная атмосфера близка к условиям 1-РА (СО2 -3-9%, О2 -13-20%). Ответная реакция необработанных плодов варианта МА+к на стрессовые условия хранения аналогична варианту 1-РА+к. Вероятно, сформировавшееся сочетание компонентов газовой среды (высокий уровень СО2) способствовало ингибированию накопления антиоксидантов в кожице плодов, высокий экзогенный этилен стимулировал синтез, а кислорода —  окисление α-фарнезена, избыток свободных радикалов вызвал поражение клеток, проявившееся в побурении кожицы. Индексы загара — СФС/КТ281 и рутин/ КТ281 в варианте МА+контроль через три месяца хранения были минимальными и составляли 28,6 и 6,2 соответственно (что в несколько раз меньше, чем в вариантах ОА+к), а потери от загара – максимальными (рисунок 10, таблица 4).

Следует отметить, что в условиях 1-РА и МА плоды, пораженные загаром, существенно отличаются от плодов, пораженных этим заболеванием, но хранившихся в других условиях регулируемой и обычной атмосферы (условия 2-РА, 3-РА и ОА) высокой интенсивностью побурения, глубиной проникновения в подкожные слои. Вероятно, усилению  заболевания способствует комплексное влияние факторов: высокое содержание кислорода (16-18%) и  углекислого газа (1-РА — 3-4%, МА – 3-9%), высокий уровень содержания экзогенного этилена (1-РА – до 78, МА – до 280 и более ppm). Кроме того, в атмосфере с высоким содержанием этилена, что чаще всего бывает при недостаточной вентиляции/воздухообмене (условия 1-РА, МА и др.), могут присутствовать мало летучие соединения, выделяющиеся плодами в процессе их жизнедеятельности и стимулирующие развитие загара. Было отмечено, что при высоком содержании кислорода, чем выше содержание в атмосфере камеры этилена и СО2, тем раньше сроки появления и выше степень проявления загара.

Таблица 4. Влияние условий хранения, послеуборочной обработки 1-МЦП на индексы загара. Мартовское. 3 месяца хранения.

ОА+контроль 72,7 19,0
ОА+МЦП 214,0 46,8
МА+контроль 28,6 6,2
МА+МЦП 116,5 20,5
МАсмесь+контроль 30,8 6,9
МАсмесь+МЦП 75,7 13,6

Таким образом, условия 1-РА и МА отличаются от других, рассмотренных нами условий хранения, сочетанием факторов, одновременно воздействующих и негативно влияющих на качество плодов, стимулирующих процессы, проходящие в два условных этапа развития загара. Полученные данные свидетельствуют о нецелесообразности хранения необработанных партий плодов в условиях 1-РА, МА.

Послеуборочная обработка 1-МЦП сглаживает воздействие максимально сложных условий хранения в МА, при этом на результаты хранения заметное влияние оказывает содержание экзогенного этилена в атмосфере. Индексы загара в варианте с низким экзогенным этиленом (МА+МЦП) заметно выше, чем в варианте с высоким его содержанием (МАсм+МЦП) (Таблица 4). Через три месяца хранения соотношение СФС/КТ281составляло 116,5 и 75,7, рутин/ КТ281 -20,5 и 13,6, потери от заболевания при хранении – 0 и 0%, после суток хранения при Т+20..220 С  — 0 и 80%, после 7 суток – 50 и 100% соответственно. При дальнейшем хранении процессы созревания активизируются, экзогенный этилен и, возможно, другие мало летучие соединения стимулируют синтез α-фарнезена, триенов, что сглаживает различия между вариантами, резко увеличивает восприимчивость плодов к загару.

Полученные данные еще раз доказывают, что для эффективного хранения плодов уровень экзогенного этилена не должен превышать 2-5 ppm, что возможно при низком эндогенном содержании гормона.

Дегустационная оценка контрольных и обработанных плодов после 3 месяцев хранения в МА составляла – 1,0 и 4,5 балла, твердость -6,7 и 9,0 кг/см2 , потери от загара при хранении 75,6 и 0%, при доведении до потребителя – 100 и 50% соответственно.

2-РА. Эффективное хранение плодов обеспечивается в РА с ультранизким содержанием кислорода (2-РА). Ингибирование эндогенного этилена (созревания) и, следовательно, сохранение твердости обеспечивается низким содержанием О2 (1,2%) и повышенным СО2 (1,2%), эти же факторы прямым либо косвенным образом сдерживают синтез и окисление α-фарнезена (2 фаза развития загара) накопление триенов и сдерживают синтез фенолов, что снижает антиокислительный потенциал плодов. В результате, через три месяца хранения, соотношения СФС/КТ281 и рутин/ КТ281 в варианте 2-РА+контроль составляли 91,4 и 18,5 соответственно. То есть индексы загара примерно в два раза выше, чем в варианте 1-РА+к, но в 1,4-1,7 раза ниже, чем в варианте ОА+к. В соответствии с этим,  потери от загара были ниже, чем в 1-РА, но выше, чем в ОА. Послеуборочная обработка 1-МЦП усиливает преимущества хранения в 2-РА (более глубокое ингибирование созревания, надежное сохранение твердости) и нивелирует недостатки этой технологии сдерживая синтез α-фарнезена, триенов, что обеспечивает сохранение антиоксидантов и компенсирует одно из свойств обработки 1-МЦП — ингибирование их синтеза. В результате индексы загара — СФС/КТ281 и рутин/ КТ281 в варианте 2-РА+МЦП составляли 314,3 и 54,3 соответственно (Таблица 3), что в три раза выше, по сравнению с контролем и соответствовало устойчивому состоянию плодов, отсутствию загара. Дегустационная оценка контрольных и обработанных плодов после 4 месяцев хранения составляла – 3,0 и 4,5 балла, твердость -7,1 и 9,3 кг/см2 , потери от загара при хранении — 30 и 0%, при доведении до потребителя – 60 и 0% соответственно.

Следует отметить, что при хранении сорта Мартовское (и других сортов с высокой восприимчивостью к загару) в условиях РА (с ультранизким содержанием кислорода)  риски поражения плодов загаром велики. Они усиливаются при нарушении сроков съема, загрузки камер, обработки препаратом Фитомаг®, выхода камер на режим хранения, отклонения от рекомендуемых параметров хранения, увеличения содержания экзогенного этилена, особенно в первые месяцы хранения (что стимулирует 1 фазу развития загара),  увеличение сроков хранения и др..

3-РА. Условия 3-РА  отличаются от 2-РА более высоким содержанием экзогенного этилена. Повышенное содержание гормона в атмосфере стимулирует созревание и старение плодов, проявляющееся в снижении твердости, накоплении фарнезена и продуктов его окисления, повышении восприимчивости к загару. Дегустационная оценка контрольных и обработанных плодов после 4 месяцев хранения составляла – 2,5 и 4,5 балла, твердость — 4,8 и 8,9 кг/см2 , потери от загара при хранении — 35 и 0%, при доведении до потребителя – 60 и 5% соответственно.

ОА. В условиях ОА единственный фактор хранения — пониженная температура ингибирует интенсивность дыхания и скорость созревания плодов.

Период послеуборочного дозревания в условиях ОА составляет 1,5-3 месяца (в зависимости от сорта, исходного физиологического состояния и др.). В дальнейшем — плоды резко теряют товарные и вкусовые качества (твердость, сочность и др.), а их восприимчивость к физиологическим и микробиологическим заболеваниям существенно возрастает.

Вероятно, в условиях ОА при невысоком содержании экзогенного этилена (0,7 — 3,5 ppm и более), физиологическое состояние необработанных плодов, в первую очередь обусловлено содержанием эндогенного этилена, который стимулирует свое собственное образование, накопление антиоксидантов (в первые недели хранения), стимулирует процессы распада клеточных структур и снижение твердости, стимулирует накопление α-фарнезена. А вот образование продуктов его окисления в кутикуле кожицы зависит, в том числе, и от содержания антиоксидантов. Индексы загара — СФС/КТ281 и рутин/ КТ281 в варианте ОА+контроль через три месяца хранения составляли 127,6 и 30,8 соответственно, что значительно выше, чем в необработанных плодах, хранившихся в 2-РА (91,4 и 18,5), 1-РА (45,4 и 7,0 соответственно). Потери от загара в вышеотмеченных вариантах составляли 7,0, 3,0 и 90% соответственно.

После 4 месяцев хранения резкое увеличение содержания КТ281 обусловлено снижением антиокислительного потенциала кутикулы кожицы плодов (антиоксиданты расходуются в результате окислительно-восстановительных реакций). Индексы загара — СФС/КТ281 и рутин/ КТ281 снизились до 25,1 и 5,2 соответственно и, как следствие – 90% плодов после 7 дней хранения в комнатных условиях было поражено загаром.

Послеуборочная обработка 1-МЦП в условиях ОА ингибирует синтез этилена, α-фарнезена, триенов, а также фенолов, но в меньшей степени, чем в РА  (в дальнейшем — обеспечивая их сохранение), обеспечивает сохранение твердости, а условия ОА стимулируя синтез эндогенного этилена (созревание) стимулируют синтез антиоксидантов и распад клеточных структур, стимулирует синтез α-фарнезена, триенов. В результате такого баланса, обработанные 1-МЦП плоды в течение 3-4,5 месяцев отличаются высокими товарными качествами (твердостью), устойчивостью к загару. Максимальные значения соотношений — СФС/КТ281 и рутин/ КТ281 через три месяца хранения были отмечены именно в варианте ОА+МЦП – 1035,5 и 201,5 соответственно, что в 6-8 раз выше, по сравнению с контролем. Плоды при этом проявляли устойчивость к загару, как при хранении, так и при доведении до потребителя. После четырех месяцев хранения индексы загара заметно снизились (147,3 и 23,1 соответственно), однако оставались на высоком уровне, а плоды не поражались загаром.

Дегустационная оценка контрольных и обработанных плодов после 4 месяцев хранения составляла – 2,0 и 4,3 балла, твердость -5,3 и 6,5 кг/см2 , потери от загара при хранении — 50 и 0%, при доведении до потребителя – 90 и 0% соответственно.

Хранение плодов сорта Мартовское в условиях ОА+Фитомаг® в течение 4-4,5 месяцев считаем наиболее надежным и экономически целесообразным, т.к. их качество равнозначно плодам, хранившимся в РА, технология дешевле и доступнее для производителей, а риск развития загара меньше.

Как мы уже отмечали, высокий уровень экзогенного этилена в камере с ОА (40-170 ppm) может вызвать развитие загара не только у восприимчивых к нему сортов Антоновка обыкновенная, Мартовское, но и у менее восприимчивых – Синап Северный, Богатырь как у контрольных, так и у обработанных 1-МЦП партий. В связи с этим, в ОА необходимо постоянно осуществлять контроль за содержанием экзогенного этилена, снижая его до минимально возможного уровня (проветривание, вентиляция).

Таким образом, стимулируют появление загара все факторы хранения, стимулирующие накопление КТ281, это – высокий уровень содержания кислорода, экзогенного этилена, а также факторы, ингибирующие синтез антиоксидантов — низкий уровень кислорода, высокий уровень содержания углекислого газа, которые, в свою очередь, ингибируя созревание, способствуют сохранению качества плодов. Несбалансированное сочетание факторов хранения может усилить потери от заболевания.

Послеуборочная обработка 1-МЦП сглаживает, в течение определенного периода, воздействие негативных для сохранения качества плодов, факторов хранения (в т.ч. высокий уровень кислорода, экзогенного этилена), обеспечивая устойчивость, либо существенное снижение потерь от загара.

Риски поражения плодов загаром многократно увеличиваются при съеме плодов в ранние сроки, с интенсивно растущих, молодых, малоурожайных, сильно обрезанных деревьев, из насаждений экстенсивного типа [4,11]. Отличительные особенности таких плодов — низкий уровень содержания кальция (кальций обеспечивает сохранение клеточных структур, противодействует влиянию стресс-факторов) и дисбаланс других элементов минерального состава [12-14], низкий антиокислительный потенциал, высокий уровень накопления непредельных углеводородов, окисление которых вызывает развитие заболевания. Создание и поддержание условий, способных обеспечивать оптимальный минеральный, гормональный и антиоксидантный статус плодов возможно в садах интенсивного типа с максимально управляемыми факторами (световой, водно-воздушный режим, минеральный и гормональный баланс).

Северный Синап. У плодов сорта Северный Синап сроки поражения плодов загаром намного позднее, а величина потерь – ниже, чем у сорта Мартовское (Рис. 16). Так, после трех месяцев хранения потери от загара у плодов зимнего сорта Северный Синап при всех условиях хранения – отсутствовали. После четырех месяцев хранения заболевание проявилось, как и у сорта Мартовское, сначала в варианте 1-РА+ контроль (при хранении — 10%, при доведении до потребителя — 50%), в вариантах 2-РА+контроль и ОА+контроль – лишь при доведении до потребителя (5-10%). После 6 месяцев вся партия плодов, хранившаяся в условиях 1-РА, состояла из бурых, пораженных загаром, непригодных для потребления плодов, существенные потери были отмечены также в условиях ОА (40% при хранении, 70% — при доведении до потребителя), 2-РА (10% при хранении, 25% — при доведении до потребителя). В условиях 3-РА потери от заболевания отсутствовали.

Послеуборочная обработка ингибитором биосинтеза этилена обеспечила полную защиту плодов от загара после шести месяцев  хранения в условиях ОА, 2-РА, 3-РА. Условия 1-РА, даже у обработанных плодов спровоцировали развитие заболевания (5% при хранении, 10% — при доведении до потребителя, степень поражения — слабая).

Для экономически обоснованного применения послеуборочной обработки плодов ингибитором биосинтеза этилена в различных условиях хранения, на базе результатов биохимических исследований, оценке товарного качества (твердость, свежесть, сочность, внешний вид), дегустационной оценке, данных о потерях от загара, определены сроки хранения плодов, реализующие максимальный биологический потенциал изучаемых сортов (таблица 5).

В результате комплексных исследований было установлено, что гарантированно высокое сохранение качества (достаточно высокая твердость, высокая дегустационная оценка, отсутствие загара) плодов сорта Мартовское (и других сортов с высокой восприимчивостью к загару) в течении 4-5 месяцев обеспечивалось при хранении в условиях ОА+МЦП, хранение в условиях регулируемой атмосферы, даже  в сочетании с послеуборочной обработкой 1-МЦП связано с определенными рисками (варианты 2-РА+МЦП и 3-РА+МЦП), которые могут быть оправданы лишь при постоянном мониторинге состояния продукции. Хранение в условиях 1-РА+МЦП – не целесообразно из-за высоких рисков поражения плодов загаром.

Таблица 5. Рекомендуемые сроки хранения плодов, месяцы.

ОА
2 -21%, СО2 -0,03%; С2Н4 –5-14,5 ppm)
1,5-2,0 5-6 4 6-7
1-РА
2 — 16-18%, СО2 -3-4%; С2Н4 – 38-78 ppm)
не рекомендуется не рекомендуется не рекомендуется 5-6*
2-РА
(СО2 -1,2%; О2 -1,2%, С2Н4 – 10-40 ppm)
не рекомендуется 7-8 не рекомендуется 8-9
3-РА
(СО2 -1,2%; О2 -1,2%, С2Н4 – 45-133 ppm)
не рекомендуется 4 не рекомендуется 5-7

* — велики риски поражения плодов загаром.

Максимально высокое сохранение качества плодов сорта Северный синап в течение 5-9 месяцев хранения (высокая твердость, отсутствие загара) обеспечивалось при хранении в условиях 2-РА и 3-РА в сочетании с послеуборочной обработкой 1-МЦП, далее — ОА+МЦП и 1-РА+МЦП.

Из-за высоких рисков поражения загаром хранение необработанных плодов сорта Мартовское (и других сортов с высокой восприимчивостью к загару) более двух месяцев в условиях ОА и, особенно, в РА – не целесообразно. Возможно хранение необработанных плодов сорта Северный Синап (и других сортов с не высокой восприимчивостью к загару) в условиях ОА и РА до 4 месяцев при постоянном мониторинге состояния продукции, при увеличении сроков хранения риски побурения кожицы возрастают.

Из-за определенного увеличения стоимости продукции в условиях регулируемой атмосферы ее хранение менее 3-4 месяцев малорентабельно, следовательно, хранить в условиях РА плоды, необработанные ингибитором биосинтеза этилена не целесообразно (Таблица 5).

ВЫВОДЫ

1. Восприимчивость плодов к загару определяется генотипом сорта, комплексом экологических и агротехнических факторов выращивания, сроков съема, оказывающих влияние на минеральный, гормональный и антиоксидантный статус плода, факторов и сроков хранения, их сочетания.

2. Устойчивость плодов к загару зависит от уровня накопления в кутикуле кожицы плодов триенов (КТ281), содержания антиоксидантов, соотношения антиоксиданты/КТ281. Чем выше интенсивность, уровень и чем раньше сроки накопления КТ281, тем больше вероятность раннего проявления загара, чем выше индексы СФС/КТ281 и рутин/ КТ281, тем устойчивее плоды к заболеванию. Важными составляющими для мониторинга развития загара могут быть данные по содержанию эндогенного и экзогенного этилена, темпам и уровню накопления α-фарнезена в кожице плодов.

3. Биосинтез непредельного углеводорода α-фарнезена, коньюгированных триенов, антиоксидантов в значительной мере зависит от содержания кислорода, эндогенного этилена в плодах и экзогенного – в камере хранения.

4. Подтверждена двойственная роль этилена в развитии загара. С одной стороны он стимулирует биосинтез α-фарнезена, предшественника триенов, вызывающих развитие загара, с другой – стимулирует синтез антиоксидантов, сдерживающих его развитие. Потери от загара зависят от соотношения антиоксиданты/КТ281.

4. Кислороду принадлежит ведущая роль в ингибировании накопления α-фарнезена и особенно в процессах его окисления в коньюгированные триены. Поддержание минимально допустимых для каждого сорта концентраций О2 (не вызывающих низко-кислородных повреждений плодов) позволит в максимальной степени ингибировать/контролировать развития загара.

5. Экзогенный и эндогенный этилен, очевидно, стимулируют процессы, инициирующие синтез α-фарнезена. Постоянное поддержание низкого уровня этилена (<5ppm) в камере с РА и внутри плода эффективно сдерживает биосинтез α-фарнезена и продуктов его окисления и обеспечивает защиту плодов многих сортов от загара.

6. Обработка плодов 1-МЦП при всех рассмотренных технологиях хранения ингибирует биосинтез этилена, α-фарнезена и продуктов окисления, сдерживает развитие загара. В наибольшей мере плоды сортов Мартовское и Северный Синап поражались загаром в условиях повышенного уровня О2, высокого эндогенного и экзогенного этилена (1-РА, МА), в наименьшей – при ультранизком содержании О2, умеренном содержании эндогенного и экзогенного этилена в сочетании с обработкой 1-МЦП (2-РА+МЦП).

7. При хранении необходимо тщательно контролировать состав атмосферы в камере – содержание О2,  СО2, С2Н4, так как при отклонении от рекомендуемых параметров возможны внутренние и внешние повреждения плодов.

8. Установлено прямое влияние уровня содержания эндогенного этилена и твердости на товарное качество плодов (вкус, свежесть, консистенция мякоти и др). Условия хранения: низкий уровень содержания кислорода, повышенный – углекислого газа, низкий уровень экзогенного этилена, послеуборочная обработка плодов 1-МЦП способствуют сохранению исходного качества плодов (2-РА+МЦП).

9. Определены сроки хранения контрольных и обработанных 1-МЦП партий плодов, реализующие максимальный биологический потенциал сортов Мартовское, Северный Синап в условиях ОА, 2-РА, 3-РА. Использование 1-РА для хранения плодов изучаемых сортов не рекомендуется.

10. Не рекомендуется хранить в одной камере плоды нескольких сортов, имеющих различный уровень биосинтеза этилена и даже одного сорта, но с различной степенью зрелости.

11. Каждая технология хранения плодов имеет свои преимущества и недостатки, поэтому необходимо сравнительными испытаниями установить для каких сортов и какого качества плодов, сроков хранения, наличия материально-технической базы, квалификации кадров и для каких сегментов рынка целесообразно их использовать. В одном хозяйстве могут эффективно использоваться несколько технологий.

12. Выявленные механизмы развития загара позволяют вести поиск новых технологических возможностей защиты плодов от заболевания.

Многолетними исследованиями и производственной проверкой установлено, что максимальная эффективность разработанных технологий хранения плодов достигается при использовании продукции высокого качества, для гарантированного сохранения которой необходимо все элементы: производство, уборка, хранение, товарная обработка и доведение продукции до потребителя — объединить в единую управляемую технологическую систему.

Список литературы.

1. Гудковский В.А. Причины повреждения плодов загаром и система мер борьбы с этим заболеванием / В.А. Гудковский // Повышение эффективности садоводства в современных условиях Т.3: Материалы Всероссийской научно практической конференции. МичГАУ, 2003 – С.207-216.

2. Гудковский В.А. Основные итоги исследований по разработке и освоению инновационных технологий хранения плодов / В.А. Гудковский, Л.В. Кожина, А.Е. Балакирев, Ю.Б. Назаров // Инновационные основы развития садоводства России: Труды Всероссийского научно-исследовательского института садоводства имени И.В. Мичурина. – Воронеж: Кварта, 2011. – С. 268-291.

3. Гудковский В.А. Современные и новейшие технологии хранения плодов (физиологические основы, преимущества и недостатки) / В.А. Гудковский, Л.В. Кожина, А.Е. Балакирев // Труды Всероссийского научно-исследовательского института садоводства им. И.В. Мичурина. Научные основы садоводства: Сб. науч. Трудов. – Воронеж.: Кварта, 2005. —  С.309-325.

4. Гудковский В.А. Научно-практические основы совершенствования технологий хранения плодов, ягод и овощей в обычной, регулируемой и модифицированной атмосфере с использованием отечественного ингибитора биосинтеза этилена./В.А. Гудковский, Л.В. Кожина, А.А. Кладь, А.Е. Балакирев, Ю.Б. Назаров// Достижения, перспективы и направления развития садоводства и питомниководства в Российской Федерации: мат. науч.- практ. конф. Мичуринск-наукоград РФ, 2011.- С. 26-47.

5. Streif J. Haltbarkeit und Fruchtgualitat durch Fortschritte in der Lagertechnik verbessern: CA/ULO pur DCA pur oder mit MCP? Teil 1./ J. Streif, R. McCormick, D. Neuwald //. Besseres Obst, – 2008. — №8. – S. 9-11.

6. Streif J. Haltbarkeit und Fruchtgualitat durch Fortschritte in der Lagertechnik verbessern: ULO pur, mit DCA oder MCP? Teil 2. / J. Streif, R. McCormick, D. Neuwald // Besseres Obst. – 2008. — №9. – S. 10-12.

7. Geyer M., Praeger U. Lagerung gartenbaulicher Produkte // Kuratorium fur Technik und Bauwesen in der Landwirtschaft e.V. (KTBL), Darmstadt, 2012. – 296 p.

8. Zanella A (2003) Control of apple superficial scald and ripening — a comparison between 1-methylcyclopropene and diphenylamine postharvest treatments, initial low oxygen stress and ultra low oxygen storage. Postharvest Biol. Technol. 27: 69-78.

9. Rupasinghe HPV, Murr DP, Paliyath G, Skog L (2000) Inhibitory effect of 1-MCP on ripening and superficial scald development in ‘McIntosh’ and ‘Delicious’ apples. J. Hort. Sci. & Biotechnol 75: 271-276.

10. Watkins CB, Nock JF, Whitaker BD (2000) Responses of early, mid and late season apple cultivars to postharvest application of 1-methylcyclopropene (1-MCP) under air or controlled atmosphere storage conditions. Postharvest Biol Technol 19: 17-32.

11. Гудковский В.А. Роль минерального состава, гормонов и антиоксидантов в защите плодов и растений от физиологических заболеваний / В.А. Гудковский, Ю.Б. Назаров, Л.В. Кожина // Инновационные технологии производства, хранения и перепаботки плодов и ягод: Материалы науч.-практ. конф. 5-6 сентября 2009г, Мичуринск. 2009. С. 26-40.

12. Saure M.C.(2005). Calcium translocation to fleshy fruit: its mechanism and endogenous control. Sci.Hort.105:65-89.

13. Perring M.A., Jackson C.H.(1975). The mineral composition of apples. Calcium concentrations and bitter pit in relation to mean mass per apple. J. Sci. Food Agric .26:1493-1502.

14. Marschner H.(1995). Mineral Nutrition of Higher Plants, 2.Aufl.Academic Press, Amsterdam.

15. Ракитин В.Ю., Ракитин Л.Ю. Определение газообмена и содержания этилена, двуокиси углерода и кислорода в тканях растений / В.Ю. Ракитин, Л.Ю. Ракитин // Физиология растений. М.: Наука – Т.33.-выпуск 2. – 1986. – С. 403-413.

16. Морозова Н.П. Спектрофотометрическое определение содержания фарнезена и продуктов его окисления в растительном материале / Н.П. Морозова, Е.Г. Салькова // Биохимические методы. М.:Наука, 1980. с. 107-112.

17. Луковникова Р.А. Определение витаминов других биологически активных веществ./ Р.А. Луковникова, Н.П. Ярош.// Методы биохимического исследования растений. Под ред. А.И. Ермакова, Ленинград: ВО «Агропромиздат», 1987. С. 111-119.

18. Tromp J. Fundamentals of temperate zone tree fruit production/ J. Tromp, A.D. Webster and S.J. Wertheim // Backhuys Publishers, Leiden, 2005. – 400 p.

19. Ju Z, Bramlage WJ (1999) Phenolics and lipid-soluble antioxidants in fruit cuticle of apples and their antioxidant activities in model systems. Postharvest Biol Technol 16: 107-118

20. Ju Z. Cuticular phenolics and scald dewelopment in “Delicious” apples. / Z. Ju; W.J. Bramlage // J.Am.Soc.Hortic.Sc., 2000; Vol.125, N 4, — P.498-504.

21. Alwan TF, Watkins CB (1999) Intermittent warming effects on superficial scald development of ‘Cortland’, ‘Delicious’ and ‘Law Rome’ apple fruit. Postharvest Biol. Technol. 16: 203-212.

22. Wang Z, Dilley DR (2000) Initial low oxygen stress controls superficial scald of apples. Postharvest Biol. Technol. 18: 210-213.

23. Whitaker BD (2000) DPA treatment alters a-farnesene metabolism in peel of ‘Empire’ apples stored in air or 1.5% 02 atmospheres. Postharvest Biol. Technol. 18: 91-97

24. Blanpied C.D. A review of the biology of storage scald and the technology of its controll// Tree fruit post harvest Journal. 1990/ 1. P. 14-15

25. Watkins CB (2003) Principles and practices of postharvest handling and stress. In: Apples, Botany, Production and Uses. (Ferree DC, Warrington IJ, eds), CABI publishing, Wallingford, Oxon, UK: 585-614

26. Lau OL, Barden CL, Blankenship SM, Chen PM, Curry EA, DeEU JR, Lehman-Saleda L, Mitscham EJ, Prange RK, Watkins CB (1998) A North American cooperative survey of ‘Starkrimson Delicious’ apple responses to 0.7% 02 storage on superficial scald and other disorders. Postharvest Biol Technol 1 13: 19-26

27. Chervin C, Raynal J, Andre N, Bonneau A (2001) Combining controlled atmosphere storage and ethanol vapors to control superficial scald of apple. HortScience 36: 951-952.

28. Geyer M., Praeger U. Lagerung gartenbaulicher Produkte // Kuratorium fur Technik und Bauwesen in der Landwirtschaft e.V. (KTBL), Darmstadt, 2012. – 296 p.

29. Wang Z, Dilley DR (2001) Initial low oxygen stress (ILOS) controls scald of apples without using postharvest chemical treatments. Acta Hort 553: 261-266

30. Ju Z, Duan Y, Zu Z (2000) Mono, di- and tri-acylglycerols and phospholipids from plant oils inhibit scald development in ‘Delicious’ apples. Postharvest Biol Technol 19: 1-7

31. Lafer F. Die Fruchtgualitat erhalten durch dynamische CA – Lagerung./ F. Lafer// Besseres Obst. – 2008. — №9.-S. 17-20.

32. Zanella A., Cazanelli P., Panarese A., Coser M., Cecchinel, M. andRossi, O. Fluorescence response to low oxygen stress:Modern storage technologies compared to SmartFresh treatment of apple./ A. Zanella, P. Cazanelli, A. Panarese, M. Coser, M. Cecchinel and O. Rossi // Acta Hort.- 2005.-№ 682. –S. 1535 – 1542.

33. Zanella A. Control] of apple scald — a comparison between 1 -MCP and DP A postharvest treatments, ILOS and ULO storage, ActaHorticulturae 600, ISHS 2003, pp.271-275.

34. Zanella A., Gazanelly P., Rossi O. Dynamic controlled atmosphere storage by means of chlorophyll fluorescence response for firmness retention in apples// Proc. 1C on Ripening Regulation and Postharvest fruit quality. Acta Hort. 796. ISHS 2008, pp.77-82.

35. Schouten SP, Prange RK, Verschoor JA, Lammers TR, Oosterhaven J (1997) Improvement of quality of ‘Elstar’ apples by dynamic control of ULO conditions. CA’97, University of California, Davis, CA, USA.

36. Veltman RH, Verschoor JA, Ruijsch van Dugteren JH (2003) Dynamic control system (DCS) for apples (Malus domestica Borkh. cv ‘Elstar’): optimal quality through storage based on product response. Postharvest Biol Technol 27: 79-86.

37. Mattheis J, Buchanan DA, Fellman Ж (1998) Volatile com­pounds emitted by ‘Gala’ apples following dynamic atmosphere storage. J Amer Soc Hort Sci 123: 426-432

Причко Татьяна Григорьевна
д-р с.-х. наук, профессор

Государственное научное учреждение Северо-Кавказский зональный научно-исследовательский институт садоводства и виноградарства Россельхозакадемии, Краснодар, Россия

В статье дан анализ последних лет развития интенсивного садоводства на юге России. Исследовано влияние стрессовых погодных факторов на урожайность и товарное качество плодов. Проанализированы основные агротехнологические мероприятия, влияющие на формирование продуктивности плодовых растений.

Характеристика стресс-факторов и их влияние на товарное качество плодов

Введение. Современные интенсивные технологии производства плодов должны быть адаптированы к природно-климатическим условиям зон возделывания, обеспечивать стабильность плодоношения, оптимальную урожайность, высокое качество плодов. Технологии, при которых затраты только на закладку 1 га сада составляют более 1 млн. руб., в первую очередь требуют точного выполнения всех необходимых агротехнических мероприятий, с учетом фенологических фаз развития растений, как при выращивании посадочного материала, так и при производстве плодов.

Анализ происшедших за последние 30 лет изменений климата на юге России свидетельствует об увеличении негативных действий  жары, засухи,  весенних заморозков. Усилия плодоводов в последние годы часто сводятся к нулю участившимися повреждениями плодов градом. В отдельных хозяйствах отмечалась полная гибель урожая от града в 2007 году, в 2008 потери качества плодов составляли от 20 до 80%. Аналогичная ситуация складывалась в 2010, 2011годах.  Жара,  засуха последних лет требуют решения вопросов повышения устойчивости плодовых культур к аномальным явлениям.

Поэтому применяемые агротехнологические мероприятия должны быть направлены на оптимизацию технологических процессов, способствующих снижению отрицательного воздействия погодно-климатических факторов.

Объекты и методы исследований. В проводимых по данному направлению исследованиях использованы программы и методики как общепринятые, так и разработанные с участием ответственных исполнителей.

Обсуждение результатов. Одним из наиболее важных условий снижения негативных последствий действия стресс-факторов является подбор оптимального сортимента возделываемых плодовых и ягодных культур, максимально приспособленных к конкретным экологическим условиям, устойчивых к комплексу заболеваний.

За последние 20 лет сортимент яблони претерпел существенные изменения. В 1990 годах в основном возделывались сорта Ренет Симиренко, Голден Делишес, Джонатан, Корей, Анис кубанский, Альпинист, Мантуанское, Мекинтош, Зимнее МОСВИРа, Старк Ред Голд, Кидс Оранж Ред, Джонаред. К 2000 году сортимент был пополнен новыми сортами, исходя из повышения спроса на плоды с высокими товарными качествами. В производственных насаждениях появились новые сорта яблони с плодами крупными по размеру, привлекательного товарного вида, с высокими вкусовыми качествами – Джонаголд, Глостер, Айдаред.

Зима 2005-2006 гг., когда во многих регионах на юге России вымерзли сады яблони с сортами  Джонаголд, Корей, усилила требования к зимостойкости сортов. Жара, засуха последних лет  подчеркивали устойчивость наиболее распространенных и широко востребованных зимних сортов яблони – Айдаред, Голден Делишес, Ренет Симиренко.

Интенсивный сад яблони в период цветения

Экономическая эффективность

В последние пять лет наблюдается  усиленный завоз посадочного материала новых сортов яблони, с плодами высокого товарного качества – Ред Чиф, Флорина, Бреберн, Гранни Смит, Чемпион, Лигол, Пинова, Голден Би, Фуджи, для которых необходимо оптимизировать условия возделывания.

В настоящее время на юге России группа наиболее востребованных сортов яблони неоднородна по структуре: в неё входят как классические сорта – Голден Делишес, Ренет Симиренко, Айдаред, Флорина, так и относительно новые, недостаточно изученные, но имеющие стабильные урожаи и высокое качество плодов – Женева Эрли, Дарья, Гала Маст (Шнига, Обрагала), Лигол, Пинова, Интерпрайс, Чемпион, Фуджи.

Особенно востребованы также иммунные и высокоустойчивые сорта, ежегодно дающие высокие урожаи, независимо от стрессовых факторов среды (дождь, туман, холод в период цветения, мороз в зимний период, жара, засуха), но немного уступающие по товарным качествам (размеру) плодов – Слава Победителям, Ред Фри, Либерти, Голд Раш, Прима.

Основу сортимента  должны составлять адаптированные к местным условиям сорта – Прикубанское, Ренет кубанский; иммунные  сорта нового поколения, сочетающие в своем генотипе устойчивость к абиои биотическим стрессорам на достаточно высоком уровне, требующие меньших обработок в период вегетации: Красный янтарь, Кармен, Родничок, Маяк станичный, Казачка кубанская, Дин Арт, Красна Дарья; а также сорта, выделенные на основе клоновой селекции, – Линда, Престиж,  Солнечное, Галакуб [1].

Анализ изменения сортового состава, проведенный по остальным культурам, позволяет рекомендовать для возделывания на юге России следующие сорта груши – Молдавская ранняя, Краснодарская летняя, Летняя Сергеева, Августин, Конференция.

Согласно породному районированию   доля косточковых культур должна составлять 30% плодовых насаждений в южном регионе, фактически косточковые в Краснодарском крае занимают 20-25% площадей.

На фоне экстремальных условий выделены наиболее адаптивные сорта сливы местной селекции – Красотка, Подруга, Милена, Балкарская; интродуцированные – Стенлей, Донецкая, Мелитопольская, Чачакская поздняя, Турчанка, обладающие комплексом ценных признаков. В зональный сортимент черешни  рекомендованы  лучшие адаптивные сорта местной селекции – Кавказская улучшенная, Сашенька,   Южная, Мак, Алая, Волшебница, Дар изобилия, Ясно солнышко. Выделены сорта вишни,  устойчивые  к монилиозу и коккомикозу, – Алекса, Казачка, Кирина, Избранница, Чудо-вишня, Нефрис, Эффектная, Жуковская [2].

Сорт Чудо-вишня

Для производства землянки в регионе сейчас очень важным является крупноплодность, ранний и поздний сроки созревания, способность плодоносить в течение весенне-летне-осеннего сезона (нейтрально-дневные сорта), вкусовые качества и аромат ягод.

Подвои семечковых культур отечественной селекции реально конкурируют с лучшими аналогами – интродуцентами, так как при их создании и отборе учтены специфические почвенно-климатические условия  регионального садоводства.  Выявлено преимущество подвоев яблони селекции СКЗНИИСиВ (серии СК) не только по снижению силы роста привитых сортов в сравнении с подвоем М9, но и в повышении устойчивости деревьев к морозам, засухе и высоким летним температурам. Проблема подбора подвоев для косточковых культур остается сложной. Подавляющее большинство питомников края выращивает посадочный материал косточковых на сильнорослых семенных  подвоях – сенцах алычи, абрикоса, персика, черешни, антипки. Среди новых отечественных клоновых подвоев особенно ценны подвои Крымской ОСС – наиболее слаборослые.

Самая основная проблема сегодня, от решения которой зависит урожайность и качество плодов, – это производство высококачественного посадочного материала.  В институте проводится работа по оздоровлению наиболее востребованных сортов и подвоев. Заложены оздоровленные маточники семечковых и косточковых культур районированными и перспективными сортами и подвоями (в т.ч. серии СК), оздоровлены и заложены в маточник 16 современных сортов земляники.

За последние десять лет технологии в промышленном садоводстве претерпели существенные изменения:

  • схемы посадки с учетом сорто-подвойных комбинаций  стали более уплотненными – от 4,0×1,0 м до 4,0×0,3 м;
  • использование формировок, обеспечивающих снижение силы роста дерева, формирование плодоношения на однолетних побегах;
  • проведение фертигации с помощью капельного орошения, однако при той засухе и жаре, которая наблюдается последние пять лет, необходимо управлять влажностью воздуха за счет спринклерных установок;
  • использование сеток для максимального сохранения плодов от града, солнечных ожогов.

С производственных позиций предпочтительно иметь односортный сад, для получения товарного урожая высокого качества необходимо полноценное перекрестное опыление. В существующих садах к  6-10 рядам основного сорта  примыкают ряды 1-2 сортов опылителей.    В современных садах интенсивного типа с сомкнутыми кронами, где насекомые работают вдоль плодовой стены, рационально размещать сорта-опылители или кребы в рядах.

Для повышения эффективности работ, направленных на подбор опылителей, определен аллельный состав гена самонесовместимости 26 сортов яблони, в том числе отечественной селекции. Результаты исследований по изучению аллельного состава S-гена 32 видов кребов с разными сроками цветения позволяют прогнозировать эффективность перекрестного опыления сортов и форм яблони с различными комбинациями аллелей гена, что немаловажно при разработке сортовых схем садовых насаждений, обеспечивающих повышение урожайности [3].

Смягчить последействие стрессов позволяет система питания растений по фазам их развития с учетом обеспеченности элементами питания. Для разных зон возделывания плодовых культур  определены оптимальные уровни и соотношения обеспеченности элементами питания яблони разных сортов, уточнены уровни содержания макроэлементов основных почв под садами, что позволяет повысить эффективность возделывания плодовых насаждений и снизить действие стресс факторов [4].

В настоящее время имеются препараты, которые представляют собой оптимальное сочетание химических и натуральных компонентов, таких как аминокислоты, микроэлементы, позволяющие  уменьшить негативное воздействие на окружающую среду, повысить эффективность применяемых удобрений. Актуально применение веществ микробного и биотехнологического происхождения, усиливающих процессы метаболизма, повышающих концентрацию аминокислот, витаминов, минеральных веществ, участвующих в защите растения от стрессовых воздействий, что подтверждается результатами наших исследований.

Так, при изучении действия физиологически активного вещества – антифриз натурального происхождения, предназначенного для повышения устойчивости растений к неблагоприятным погодным факторам среды, и в первую очередь для повышения устойчивости насаждений к весенним заморозкам, из-за отсутствия резких похолоданий в текущем году в период цветения, подтвердить его эффективность  не удалось. Однако, при проведении обработок антифризом процент завязывания плодов возрос при двукратном применении на 10,6%. Применение пуршейта, вапаргарда способствовало не только снижению повреждений растений от солнечных ожогов, но и увеличению содержания кальция в плодах, что снизило потери от физиологических заболеваний при хранении.

Наиболее эффективный и доступный способ повышения устойчивости растений к лимитирующим факторам среды – применение ФАВ – адаптогенов, которые регулируют такие физиологические процессы, как рост, деление, дифференциация клеток, цветение, созревание плодов. Во всем мире применение ФАВ в интенсивных технологиях стало неотъемлемой частью. Нами испытываются адаптогены – препараты прореживающего действия по цветкам, завязи, которые дополнительно к естественной потере  завязи усиливают прореживание на 6-10%, что позволяет получать урожай преимущественно товарного качества.

Современное садоводство должно решать также вопросы по развитию органического растениеводства, обеспечивающего получение экологически чистых продуктов питания. Это направление предусматривает использование в «биологическом земледелии» новых препаратов, которые оказывают минимальное воздействие на окружающую среду.

Высокое качество плодов сорта Ханикрисп в промышленном саду.

Для их изготовления применяется органическое сырье как животного, так и растительного происхождения.  В настоящее время зарегистрирована серия органических препаратов, которые необходимо использовать для органического растениеводства.

На первый план выходит задача – выращивание плодов не только стандартных, вкусных, но и полезных, с содержанием ценных компонентов, предопределяющих пищевую и лечебную  ценность продуктов, с высокой антиоксидантной активностью. В этом направлении нами постоянно ведется работа по выделению плодов различных культур с высоким содержа

нием биологически активных веществ – витаминов, пектина, полифенолов. Все районированные, а также новые интродуцированные сорта испытаны нами при разных технологиях хранения (обычная среда, регулируемая атмосфера, хранение с применением послеуборочной обработки плодов препаратом SmartFresh) и при переработке на различные виды консервной продукции [5].

Заключение. Таким образом, анализ факторов, оказывающих влияние на формирование продуктивности плодовых насаждений, товарные и вкусовые качества плодов  в садах интенсивного типа, позволяет сделать вывод, что  правильное размещение плодовых насаждений, подбор оптимальных сорто-подвойных комбинаций, соблюдение в комплексе всех агротехнологических мероприятий с учетом фенологических фаз развития растений позволит иметь стабильные урожаи плодов высокого качества.

Литература

  1. Ульяновская, Е.В. Новые комплексно устойчивые к абио- и биотическим стрессорам сорта яблони для формирования адаптивных агроценозов / Е.В. Ульянов- ская, Е.Н. Седов, Г.А. Седышева [и др.] // Фундаментальные и прикладные разработки, формирующие современный облик садоводства и виноградарства: материалы науч.- практ. конф. (5-8 сент. 2011 г.). – Краснодар: СКЗНИИСиВ, 2011. – С. 112-116.
  2. Заремук, Р.Ш. Комплексная оценка адаптивности нового поколения сортов сливы и вишни в условиях Краснодарского края / Р.Ш. Заремук, С.В. Богатырева, Ю.А. Доля // Фундаментальные и прикладные разработки, формирующие современный облик садоводства и виноградарства: материалы науч.-практ. конф. (5-8 сент. 2011 г.). – Краснодар: СКЗНИИСиВ, 2011. – С. 147-154.
  3. Ушакова, Я.В. SSR-генотипирование подвоев яблони российской селекции / Я.В. Ушакова, И.И. Супрун // Материалы 6 международного конгресса: «Биотехноло- гия: состояние и перспективы развития», г. Москва, 21-25 марта 2011.– С. 262-263.
  4. Попова, В.П. Экологические особенности режимов питания яблони / В.П. По- пова, Т.Г. Фоменко // Плодоводство и виноградарство Юга России [Электронный ре- сурс]. – Краснодар: СКЗНИИСиВ, 2011. – № 8 (2). – Шифр Информрегистра: 0421100126/0023. – Режим доступа: http://www.journal.kubansad.ru/pdf/11/02/06.pdf.
  5. Причко, Т.Г. Изменение качественных показателей плодов яблони в процессе выращивания и хранения / Т.Г. Причко, Л.Д. Чалая, М.В. Карпушина // Плодоводство и виноградарство Юга России [Электронный ресурс]. – Краснодар: СКЗНИИСиВ, 2011. – № 7 (1).- Шифр Информрегистра: 0421100126/0002. – Режим доступа: http://www.journal.kubansad.ru/pdf/11/01/02.pdf.

Кладь А.А.
доктор с.-х. наук, профессор, Ген. директор ЗАО «Сад-Гигант» Краснодарского края

Гудковский В.А.
доктор с.-х. наук, научный консультант ЗАО «Сад-Гигант», зав. отделом послеуборочных технологий ГНУ ВНИИС им. Мичурина

Хранение фруктов в ЗАО «Сад-Гигант»

Оборудование для хранения в регулируемой атмосфере

Камеры для хранения в РГС должны обеспечивать повышенную газонепроницаемость, что достигается применением специальных материалов для строительства и обработки поверхности камер и установкой герметичных дверей специального исполнения.

Для создания регулируемой атмосферы в камерах используются генератор азота, адсорберы СО2, SO2, каталитические конвертеры этилена и другое специальное оборудование.
Встроенная система газового анализа и автоматического управления режимами хранения на основе современного контроллера (PLC). В комплект поставки входит программа для оперативного диспетчерского управления работой оборудования и построения графиков режимов в камерах. При наличии модемной связи возможно дистанционное управление работой оборудования.

Ежегодный объем длительного хранения 30 тысяч тонн

Оборудование позволяет реализовать технологии быстрого уменьшения концентрации кислорода RCA (Rapid Controlled Atmosphere) и сверхбыстрого снижения уровня кислорода ILOS (Initial Low Oxygen Stress).
Технология LECA (Low Ethylene Controlled Atmosphere) обеспечивает защиту от преждевременного созревания фруктов и овощей (бананы, цитрусовые) и паталогофизиологического воздействия этилена (груши, овощи и т.д.).
Чрезвычайно важным является правильный расчет и подбор холодильного оборудования (схема охлаждения, холодопроизводительность, кратность воздухообмена, поверхность и технические характеристики воздухоохладителей, скорость движения воздуха и многие другие аспекты).

Хранение в РА

На западе хранение плодоовощной продукции в РГС имеет широкое промышленное применение. В России проводились опыты по освоению технологий хранения в регулируемой атмосфере в 80-90-х годах прошлого столетия, но практические проекты начали воплощаться в жизнь сравнительно недавно, 2-3 года назад.

Хранение в РА

Факторы, влияющие на качество продукции

Во время хранения в плодах и овощах происходят различные физические и физиолого-биохимические процессы, которые оказывают существенное влияние на их качество и сохраняемость. Эти процессы протекают в тесной взаимосвязи и зависят от природных свойств плодов и овощей, наличия повреждений, зрелости, качества товарной обработки, режима хранения и других факторов. В значительной мере процессы хранения являются продолжением процессов, происходящих в плодах и овощах во время их роста. Но есть и принципиальное различие между ними: во время роста наряду с распадом органических веществ в плодах и овощах осуществляется синтез этих веществ, а в хранящихся объектах происходит главным образом их распад и расход с выделением энергии, необходимой для жизнедеятельности клеток.

За критерий сохраняемости плодов и овощей практически принимают сроки их хранения и размеры потерь, которые зависят от видовых и сортовых признаков (природных особенностей), условий выращивания, степени зрелости, вида и степени поврежденности, режима хранения и перевозки и других факторов. При этом сроками хранения следует считать время, в течение которого плоды и овощи в нормальных условиях сохраняют свои потребительные достоинства, и имеют минимальные потери, а не любой срок, который может исчисляться до момента их порчи.

Хранение в РА

По срокам хранения при оптимальных условиях плоды можно разделить на три группы: плоды с длительным сроком хранения (в среднем от З до 6—8 мес.): яблоки, груши зимних сортов и виноград поздних сроков созревания (некоторые столовые сорта), лимоны, апельсины, клюква, гранаты, орехи; плоды со средним сроком хранения (в среднем от 1 до 2—З мес.): яблоки, груши и виноград со средним сроком созревания, айва, рябина, брусника и др.; плоды с коротким сроком хранения (в среднем 15 —20 дней): большинство косточковых, ранние сорта яблок, груш и винограда, смородина, крыжовник и некоторые другие ягоды.

Сохраняемость плодов в пределах указанных групп в значительной мере определяется помологическим сортом, а также скоростью процессов созревания, условиями выращивания, при которых происходит их формирование (температура и влажность воздуха, почва, удобрения, вносимые в почву, высота местности над уровнем моря агротехнические приемы), и другими факторами.

Хранение в РА

Влияние тепла сказывается сохраняемости двояко: с одной стороны, более высокая температура во время вегетационного периода ускоряет созревание плодов и овощей, вследствие чего они нередко приобретают свойства, присущие более скороспелым сортам, а это отрицательно влияет на их хранение. Но, с другой стороны, в условиях теплого климата формирование плодов и овощей поздних сортов происходит медленнее, в течение более продолжительного вегетационного периода. Плоды и овощи, не получившие необходимого количества тепла, содержат меньше сахара и плохо сохраняются (например, виноград, яблоки, арбузы, дыни и др.).

Плоды и овощи во время роста должны получать достаточное количество влаги. Но при избыточном водоснабжении почвы они содержат больше влаги, обладают повышенной испаряемостью и увядают.

На сохраняемость плодов влияет возраст насаждений, степень их обрезки, а также подвой, на котором привит данный сорт. Большую роль играют почвы, удобрения и другие условия выращивания.

Хранение в МА, 8 мес.
Хранение в МА, 8 мес.

Очень большое влияние оказывают удобрения, и в первую очередь соотношения между основными удобрениями — азотом, фосфатом и калием.

Хранение плодов груши, РА.
Хранение сливы, РА 1-4 мес.

О влиянии условий выращивания на лежкость плодов можно судить на основании следующих данных, заимствованных из различных источников. Установлено, что почвы с близким залеганием галечника, песчаника и кислые содержат в недостаточном количестве кальция и бора, вследствие чего выращенные на таких почвах плоды, и в частности яблоки, сильнее поражаются при хранении горькой ямчатостью, стекловидностью и низкотемпературными ожогами. Но содержание в почве кальция еще не всегда обеспечивает хорошее поступление его всегда обеспечивает хорошее поступление его в плоды. А поскольку кальций является обязательным компонентом клеточных мембран, то даже незначительное снижение его содержания в плодах может привести к серьезным нарушениям в обмене веществ со всеми вытекающими последствиями. В связи с этим весьма эффективным является предуборочное опрыскивание плодов раствором, содержащим кальций.

Хранение сливы, РА 1-4 мес.

Что мы знаем о яблоках и их хранении

Хранение яблок в РГС замедляет в плодах процессы послеуборочного дозревания, тем самым продлевается период их хранения без снижения товарных качеств. Кроме того, использование РГС позволяет хранить яблоки, не выдерживающие низких температур, при более высоких(2-4 градуса С) без значительных потерь. Если замедлить процессы жизнедеятельности плодов не снижением температуры, а повышением концентрации СО2 и снижением содержания О2, то можно предотвратить физиологические расстройства (потемнение мякоти и др.), которые часто наблюдаются при низкой температуре хранения.

Преимущества хранения яблок в охлаждённом состоянии в комплексе с РГС заключается в том, что при этом способе хранения они практически полностью сохраняют свои органолептические и физико-химические свойства. Такая продукция мало чем отличается от свежесобранной.

Хранение плодов черешни, РА 1 мес.

Основным недостатком хранения яблок в состоянии психроанабиоза является необходимость использования дорогостоящих холодильных установок и постоянная потребность энергии для их работы.
Другие способы хранения являются более дешёвыми, но не позволяют предотвратить потерю многих потребительских качеств яблок. Так при хранении, основанном на ксероанабиозе, яблоки теряют свою сочность и вкус.

Хранение плодов черешни, РА 1 мес.
Применение технологии увлажнения в камере.

Эффективность хранения плодов в РГС определяется снижением потерь, сохранением качества плодов и продолжительностью хранения по сравнению с хранением в обычных хранилищах. Хранение плодов в РГС связано с дополнительными капитальными вложениями, в основном на герметизацию и газовое оборудование, и с текущими эксплуатационными затратами, что сдерживает широкое внедрение в производство таких хранилищ.

По моему мнению, для повышения экономичности процесса хранения яблок в холодильниках необходимо внедрять новые разработки в области холодильной техники, использовать конструкторские решения, сокращающие притоки тепла и повышающие КПД холодильной техники.

Линия товарной обработки плодов

Многолетние исследования показали, что хранение плодов в хранилищах с РГС, несмотря на дополнительные капитальные вложения, эффективно.

Линия товарной обработки плодов
Оборудование лаборатории хранения НПО

Благодарю за внимание!

Ильинский А.С.Ильинский А.С., директор исследовательско-технологического центра, доктор технических наук, профессор

Galarina = Gala x Florina

Ноябрь 2002 Январь 2004

Направления исследований по определению минимально допустимых концентраций кислорода.

  • по флуоресценции хлорофилла (DCA)
  • по измерению продуктов ферментации (DCS)
  • по коэффициенту дыхания

Определение минимально допустимых концентраций О2 по концентрации паров этанола

  • Измерение паров этанола на уровне ppb
  • Измерение в специальном контейнере
Члены АППЯПМ
Алименко Игорь Анатольевич

Алименко Игорь Анатольевич

генеральный директор ЗАО «Зареченский» (Воронежская область)





Авторские права © 2008-2024 АППЯПМ. Все права защищены.
Запрещено использование материалов сайта без согласия его авторов и обратной ссылки.