Мичуринский государственный аграрный университет
Мичуринск -Наукоград
Юг-Полив
|
Гудковский В.А., доктор сельскохозяйственных наук, академик РАСХН.*
Кожина Л.В.*
Балакирев А.Е.*
Назаров Ю.Б.*
Урнев В.Л. **
*ГНУ ВНИИС им. И.В. Мичурина, Россия.
** ОАО «Агроном» Липецкая область, Россия.
Ключевые слова: плоды, сорта яблони, условия хранения, обычная (ОА), регулируемая (РА), модифицированная (МА) атмосфера, 1-метилциклопропен, этилен, α-фарнезен, триены, антиоксиданты, загар.
Влияние условий хранения на поражаемость загаром и качество плодов яблони средней зоны России.
Чаще всего спрос на плоды в средней зоне садоводства России возрастает с середины декабря и продолжается до мая (3 — 8 месяцев хранения), при этом нет гарантии полной реализации продукции. Отсутствие спроса связано в первую очередь с низким товарным качеством плодов, высокой ценой и наличием на рынке импортных яблок (Польша, Китай, Молдавия, Украина и др.) с более привлекательным для населения соотношением цена/качество.
Следует полагать, что после вступления в ВТО садоводство России окажется в еще более жесткой конкурентной среде. Необходимыми условиями противостояния вызовам международного рынка являются повышение качества производимой продукции, ее оперативной подачи в различные регионы страны в необходимые сроки, экономически обоснованное использование различных технологий хранения.
Как известно, качество плодов и их лежкоспособность формируется под влиянием комплекса биологических, экологических, агротехнических, организационно-экономических и послеуборочных факторов (условия хранения, товарной обработки, реализации плодов и др.) [1,2]. Нарушения в любом звене этой системы приводят к снижению эффективности конечного результата.
Как показывает практика, создание современных холодильников и садов без освоения новейших знаний по управлению процессами жизнедеятельности плодов на всех этапах: сад – хранение – доведение до потребителя, также не гарантирует получение высокого конечного результата.
Жизнь плода, как любого биологического объекта – ограничена, поэтому важно для эффективного ведения производства сохранить товарные качества продукции при минимальных потерях.
Основные потери при хранении плодов: от физиологических заболеваний (загар, подкожная пятнистость, побурение сердцевины и мякоти, разложение и др.) и грибной инфекции (глеоспориозная, плодовая гниль, серая плесень и др.); убыль массы при дыхании и транспирации; потери качества (снижение твердости, ухудшение внешнего вида, вкуса, аромата и др.). Существующие технологии хранения — обычная, регулируемая (со стандартным >1,5%, ультранизким 0,8-1,2 % и еще более низким — 0,4-0,6% содержанием кислорода), модифицированная атмосферы имеют свои преимущества и недостатки, отличаются по затратам на их осуществление, но не обеспечивают в полной мере защиту от потерь [3-8].
Освоение крупными плодоводческими хозяйствами новых технологий, сочетающих хранения плодов в ОА, РА с послеуборочной обработкой плодов ингибитором биосинтеза этилена 1-метилциклопропеном (1-МЦП, препарат «Smart Frech», США, Фитомаг®, Россия) позволяет значительно снизить потери от заболеваний, сохранить качество плодов [1-10]. При этом, даже в рамках одной технологии существенное влияние на конечный результат оказывают условия хранения (температура, содержание СО2, О2, этилена).
Механизмы поражения плодов основными видами физиологических заболеваний различны, однако выявлены и общие закономерности: восприимчивость к каждому из них в различной степени зависит от минерального, гормонального и антиоксидантного баланса плода, его физиологического состояния.
Наши многолетние исследования и результаты других специалистов подтвердили, что восприимчивость плодов к загару определяется генотипом сорта, в меньшей степени загаром поражаются плоды, снятые в оптимальные сроки, с высоким содержанием антиоксидантов, кальция и сбалансированным содержанием других элементов минерального состава [1,11-14]. Однако, на лежкоспособность плодов (даже очень высокого качества) существенное влияние оказывают условия хранения.
Для мониторинга физиологического состояния плодов широко используются такие биохимические показатели, как эндогенный этилен, α-фарнезен, продукты окисления фарнезена (КТ281) и твердость, которые позволяют не только оценить качество плодов, но и выявить вероятность развития физиологических заболеваний, которые составляют основную долю потерь при хранении плодов.
В связи с вышеизложенным, целью наших исследований является: 1) выявление роли биохимических показателей в развитии загара плодов яблони; 2) изучение влияния условий хранения на качество плодов средней зоны садоводства России для экономически обоснованного применения разработанных технологий хранения.
МЕТОДИКА И МАТЕРИАЛЫ ИССЛЕДОВАНИЯ
Исследования выполнены в 2009-2011 гг. Объекты исследований – 2 сорта яблони: Мартовское, Синап Северный. Съем плодов проводили в промышленных насаждениях, при содержании эндогенного этилена 0,8-1,5 ppm, хранили – в производственных фруктохранилищах с обычной и регулируемой атмосферой (ОАО «Агроном» Липецкой области), использованы результаты исследований, проведенных в ЗАО «15 лет Октября». Биохимические исследования выполнены в лаборатории отдела послеуборочных технологий ГНУ ВНИИС им. И.В. Мичурина (г. Мичуринск). Содержание этилена — определяли газохроматографически (GC-2014, SHIMADZU, Япония) [15], α-фарнезена и продуктов его окисления – спектрофотометрически (СФ-201, Россия) [16], содержание суммы фенольных соединений (СФС), рутина – спектрофотометрически [17] твердость плодов измеряли пенетрометром FT-327 с плунжером для яблок.
Часть плодов в день съема обрабатывали ингибитором этилена препаратом Фитомаг®, по разработанной во ВНИИС им. И.В. Мичурина технологии. Контрольные и обработанные плоды закладывали на хранение в камеры с обычной и регулируемой атмосферой (таблица 1).
Таблица 1. Условия хранения в различных вариантах опыта.
Варианты опыта |
Температура, °C |
СО2, % |
О2, % |
С2Н4, ppm |
ОА*+контроль |
+2±0,5 |
0,03 |
21 |
5-14,5 |
ОА+МЦП |
1-РА+контроль |
+2±0,5 |
3-4 |
16-18 |
38-78 |
1-РА+МЦП |
2-РА+контроль |
+2±0,5 |
1,2 |
1,2 |
10-40 |
2-РА+МЦП |
3-РА+контроль |
+2±0,5 |
1,2 |
1,2 |
45-133 |
3-РА+МЦП |
ОА* — обычная атмосфера — высокий уровень содержания кислорода и минимальный — углекислого газа (О2 -21%, СО2 -0,03%), экзогенный этилен 5,2-14,3 ppm);
1-РА — односторонне регулируемая атмосфера – высокий уровень содержания кислорода (О2 -16-17%), повышенный — углекислого газа (СО2 -3-4%); экзогенный этилен – 38-78 ppm;
2-РА — регулируемая атмосфера с ультранизким содержанием кислорода — СО2 -1,2%; О2 -1,2%, экзогенный этилен –10-40 ppm;
3-РА — регулируемая атмосфера с ультранизким содержанием кислорода — СО2 -1,2%; О2 -1,2%, высокий уровень экзогенного этилена – 45-133 ppm.
Температуру хранения поддерживали на уровне +2 ±0,5оС.
Уровень этилена (С2Н4) в окружающей среде контролировали еженедельно. Динамика содержания экзогенного этилена в различных условиях хранения представлена на рисунке 1.
Рисунок 1. Содержание экзогенного этилена в различных условиях хранения.
Для выявления роли экзогенного этилена были проведены специальные исследования, с использованием полиэтиленовых пакетов (модифицированная атмосфера – МА). (Таблица 2).
Таблица 2. Условия хранения в различных вариантах опыта.
Варианты опыта |
Температура, ОС |
СО2, % |
О2, % |
С2Н4, ppm |
Мартовское |
ОА+контроль |
+2±0,5 |
0,03 |
21 |
0,8-1,5 |
ОА+МЦП |
МА+контроль |
+2±0,5 |
4,5-8,9 |
14-18 |
107-280 |
МА+МЦП |
+2±0,5 |
3-5 |
16-19 |
1,8-4,8 |
МАсмесь+контроль |
+2±0,5 |
6-10 |
12-18 |
124-286 |
МАсмесь+МЦП |
Богатырь |
ОА+контроль |
+2±0,5 |
0,03 |
21 |
0,8-1,5 |
ОА+МЦП |
МА+контроль |
+2±0,5 |
3,5-9 |
15-18 |
74-145 |
МА+МЦП |
+2±0,5 |
3,5-5 |
16-19 |
8-25 |
МАсмесь+контроль |
+2±0,5 |
3-6 |
16-19 |
47-120 |
МАсмесь+МЦП |
Для создания МА использовали пакеты Xtend израильской фирмы «StePac». Объекты исследования: плоды сорта Мартовское и Богатырь, содержание эндогенного этилена при съеме 0,1-0,3 ppm. Варианты опыта: МА+контроль, МА+1-МЦП, МА-смесь (в один пакет были заложены плоды обработанные ингибитором биосинтеза этилена и без обработки). Условия хранения плодов представлены в таблице 2.
Степень поражения плодов загаром оценивали в течение 6 месяцев и дополнительно после 1 и 7 дней хранения при +20оС в соответствии с ГОСТ 21122-75.
РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ
В результате проведенных исследований были получены экспериментальные данные, позволяющие объективно оценить влияние основных факторов хранения — уровня О2, СО2, этилена при пониженной (+2 ±0,5оС) температуре хранения в сочетании с послеуборочной обработкой 1-МЦП и без нее на лежкоспособность двух сортов яблони — Мартовское, Северный Синап.
Различия ответной реакции плодов на условия хранения, до проявления внешних признаков заболеваний, проявились в абсолютном содержании и динамике биохимических показателей (эндогенный этилен, α-фарнезен, продукты окисления α-фарнезена (КТ281), твердость) еще на начальных этапах и стали более очевидными к середине и концу хранения.
Влияние условий хранения на накопление эндогенного этилена в плодах. Влияние эндогенного этилена на качество плодов и развитие загара.
Этилен – гормон созревания. По содержанию этилена в межклеточном пространстве оценивают физиологическое состояние, степень зрелости плодов.
Мартовское. Содержание этилена в плодах увеличивалось по мере их созревания. В целом, в необработанных плодах в первый месяц хранения содержание этилена увеличилось в десятки раз (до 200-400 ppm, против 0,8-1,5 ppm при съеме) и достигало максимальных значений лишь к пятому-шестому месяцу хранения, влияние условий хранения проявилось в уровне накопления этилена (рис.2).
Рисунок 2. Влияние условий хранения на накопление эндогенного этилена в плодах яблони.
Максимально высоким содержанием этилена (более 1200 ppm) в плодах выделились 4 варианта, хранение которых проходило в атмосфере с высоким содержанием кислорода (16-21%), это — ОА+контроль, ОА+МЦП, 1-РА+контроль, 1-РА+МЦП. В варианте 1-РА+контроль высокие уровни эндогенного этилена были отмечены в середине января — 724 ppm, возможно, что максимальные значения этилена приходились на ноябрь-декабрь, когда показания не снимались, а зафиксированное содержание относилось к климактерическому спаду (Рисунок 2).
Более низким содержанием этилена отличались плоды, хранившиеся в условиях низкого содержания кислорода (1,2%) и повышенного – углекислого газа (1,2%), это — варианты 2-РА+контроль, 3-РА+контроль (этилен 300-700 ppm).
В рeезультате исследований подтверждено, что послеуборочная обработка 1-МЦП ингибирует синтез и накопление этилена, при этом условия хранения влияют на продолжительность ингибирования. Так, после четырех месяцев хранения в ОА и 1-РА различия между вариантами уже не столь очевидны, как в начале опыта (контроль 696 и 724 ppm, 1-МЦП – 527 и 152 ppm соответственно), далее – различия еще более сглаживаются, а созревание сопровождает интенсивный подъем содержания этилена – до 1300-1600 ppm. То есть, в условиях высокого содержания кислорода (ОА, 1-РА) содержание эндогенного этилена даже в обработанных 1-МЦП плодах, после определенного периода, достигает уровня необработанных плодов, следовательно, одна обработка, без ингибирующих созревание условий хранения, не может обеспечивать надежное сохранение продукции.
В условиях РА с ультранизким содержанием кислорода различия между контрольными и обработанными плодами были очевидны до конца хранения. Максимальное ингибирование созревания плодов достигалось в условиях 2-РА+МЦП — на протяжении всего периода хранения содержание изучаемого показателя не превышало 29,3 ppm (контроль – 152-430 ppm), в условиях 3-РА+МЦП содержание этилена в плодах существенно выше – 200-400 ppm (контроль – 400-727 ppm). Возможно, высокий уровень экзогенного этилена (особенно в первый месяц хранения — до 76 ppm) в условиях 3-РА (рис.1), оказал стимулирующее влияние на накопление эндогенного этилена, в результате и в контрольных и в обработанных плодах содержание показателя существенно выше, чем при хранении в условиях более низкого экзогенного этилена (вариант 2-РА).
Полученные данные позволяют полагать, что наиболее существенное влияние на ингибирование эндогенного этилена оказывает низкое содержание кислорода (1,2 %), повышенное содержание углекислого газа (1,2%), послеуборочная обработка 1-МЦП при совместном воздействии факторов – эффективность ингибирования увеличивается (вариант 2-РА+МЦП). Показано, что высокое содержание кислорода (и при высоком -3-4% и при нормальном -0,03% содержании углекислого газа) стимулирует синтез эндогенного этилена (1-РА, ОА), высокий уровень экзогенного этилена (особенно в первый месяц хранения), также оказывает стимулирующее влияние на внутриплодное содержание этилена (3-РА).
В результате проведенных исследований показано, что эндогенный этилен оказывает прямое влияние на качество плодов. Чем выше его содержание, тем выше степень зрелости, при перезревании — ниже содержание биологически активных веществ, ниже твердость, выше восприимчивость к разложению, внутреннему побурению, грибной инфекции и др. То есть, чем выше содержание эндогенного этилена, тем ниже товарные и потребительские качества плодов.
Роль С2Н4 в развитии загара до конца неясна. Однако, опосредованное влияние гормона на развитие заболевания было выявлено в результате собственных исследований и исследований зарубежных авторов [1-4,18-20]. Было показано, что увеличение накопления α-фарнезена происходит только после повышения эндогенного этилена в плодах до физиологически активных концентраций. При съеме плодов чем выше уровень содержания этилена (при поздних сроках съема, после обработки плодов стимуляторами созревания), тем выше содержание α-фарнезена, но не восприимчивость к загару. Чаще всего увеличение содержания эндогенного этилена после съема плодов сопровождается накоплением α-фарнезена и продуктов его окисления, что приводит к развитию загара. Но известны случаи, когда плоды сорта Антоновка обыкновенная с низким уровнем эндогенного этилена (1,5-5 ppm) содержали высокий уровень КТ281 в кутикуле кожицы 9-15 нмоль/см2, при этом 30-80% плодов были поражены побурением кожицы в условиях холода и 100% — при доведении до потребителя. Таким образом, загаром поражаются плоды с различным содержанием эндогенного этилена (от 5 до 1000 ppm). Вероятно, наряду с эндогенным этиленом, влияют на развитие заболевания и другие эндогенные и экзогенные факторы.
Северный Синап. Содержание эндогенного этилена в плодах этого сорта в 1,5-2 раза ниже, чем у сорта Мартовское. Реакция сорта на условия хранения в целом совпадает с реакцией сорта Мартовское: максимальный уровень содержания этилена (800 ppm) отмечен в конце хранения (6,5 месяцев) в варианте ОА+контроль, в пяти вариантах – ОА+МЦП, 1-РА, 3-РА, 2-РА, 1-РА+МЦП содержание этилена после 4,5 месяцев хранения соответствовало 300-550 ppm, причем у двух последних вариантов синтез этилена в течении первого месяца хранения существенно ингибировался (60,2 и 12,3 ppm соответственно), а в варианте 3-РА+МЦП – ингибирование продолжалось до марта (23-148ppm), далее – заметный подъем (350 ppm).
Минимальным содержанием эндогенного этилена, также, как у сорта Мартовское, отличался вариант 2-РА+МЦП — на протяжение всего периода хранения содержание изучаемого показателя составляло от 6 до 46 ppm.
Влияние условий хранения на изменение твердости плодов. Влияние твердости на качество плодов и развитие загара.
Твердость – один из основных объективных показателей для оценки качества плодов. На международном рынке плоды с твердостью ниже 5-6 кг/см2 (в зависимости от сорта) не предлагаются для реализации.
Мартовское. При созревании твердость плодов снижается. Результаты исследований показывают, что факторы хранения, стимулирующие созревание (синтез эндогенного этилена) способствуют снижению твердости, а ингибирующие созревание – сдерживают распад клеточных структур и способствуют ее сохранению. Минимальной твердостью плодов на протяжении всего периода хранения отличались контрольные варианты, хранившиеся в среде с высоким содержанием кислорода и этилена: ОА+контроль, 1-РА +контроль, 3-РА+ контроль. После 5 месяцев хранения содержание показателя было менее 5 кг/см2 , что свидетельствовало о низком товарном качестве, существенно снижало цену и саму возможность реализации этих партий плодов (рисунок 3).
Хранение плодов в среде с ультранизким содержанием кислорода и более низким содержанием этилена (условия 2-РА) обеспечивало даже после шести месяцев сохранение твердости контрольных плодов на уровне 6,6 кг/см2 .
Эффективность послеуборочной обработки 1-МЦП как ингибитора созревания проявляется и в сохранении твердости плодов. Однако в условиях повышенного содержания кислорода твердость обработанных плодов была ниже, чем твердость контрольных плодов в среде с ультранизким его содержанием (1-РА+МЦП, ОА+МЦП — 5,4, 5,6 кг/см2 соответственно, 2-РА+к – 6,6 кг/см2 ). В то же время, плоды двух вариантов, хранившихся в условиях ультранизкого содержания кислорода в сочетании с послеуборочной обработкой 1-МЦП (2-РА+МЦП, 3-РА+МЦП) отличались более высокой твердостью, по сравнению с контрольными плодами и сохраняли ее на протяжении всего периода хранения — 9,4 и 8,2 кг/см2 соответственно (контроль – 6,6 и 4,3 кг/см2 соответственно), т.е. обработка усиливает положительное влияние РА на сохранение твердости плодов, тем не менее, высокий экзогенный этилен способствует ее снижению (Рис.3).
Рисунок 3. Влияние условий хранения на изменение твердости плодов.
Таким образом, определяющее влияние на твердость плодов оказывает уровень содержания эндогенного этилена, существенному снижению твердости плодов способствовали условия регулируемой атмосферы с высоким уровнем экзогенного этилена и кислорода и условия обычной и регулируемой атмосферы с высоким содержанием кислорода. Послеуборочная обработка 1-МЦП в сочетании с хранением в условиях РА с ультранизким содержанием кислорода и повышенным — углекислого газа, способствовала надежному сохранению твердости как в условиях более низкого, так и повышенного содержания этилена, однако, в атмосфере с пониженным содержанием этилена она была выше.
В результате проведенных исследований было показано, что после четырех месяцев хранения твердость обработанных плодов в ОА сопоставима с контрольными плодами, хранившимися в 2-РА (6,5 и 7,0 кг/см2 соответственно).
Твердость плодов объективно отражает их товарные качества, потребительские свойства и, косвенным образом, степень зрелости (чем выше уровень эндогенного этилена и, следовательно, выше степень зрелости плодов, тем ниже их твердость).
Не установлено прямой связи между развитием загара и твердостью мякоти, при этом в плодах с высокой степенью развития заболевания твердость снижается.
Северный Синап. В целом, твердость плодов сорта Северный синап выше, чем у сорта Мартовское, на протяжении всего периода хранения данный показатель не снижался ниже 5 кг/см2. В результате проведенных исследований получены те же закономерности, что и на сорте Мартовское: максимальное сохранение твердости отмечено в вариантах 2-РА+МЦП, 3-РА+МЦП (9-10 кг/см2), минимальное — 3-РА+ контроль, ОА+контроль, 1-РА +контроль (5-6 кг/см2).
Влияние условий хранения на накопление α-фарнезена, КТ281 в кутикуле кожицы плодов. Влияние α-фарнезена, КТ281 на качество плодов и развитие загара.
α-фарнезен – непредельный углеводород, окисление которого сопровождается накоплением коньюгированных триенов (КТ). Увеличение содержания КТ с максимумом поглощения 281 нм до 8 и более нмоль/см2 свидетельствует о возрастающих рисках поражения плодов загаром.
Мартовское, α-фарнезен. Анализ гексановых экстрактов кутикулы кожицы плодов показывает, что во всех условиях хранения в контрольных и обработанных 1-МЦП плодах содержание α-фарнезена достигало максимальных значений в первый месяц хранения, различия лишь в уровне его накопления (Рисунок 4).
В результате проведенных исследований было установлено, что максимально высоким содержанием изучаемого показателя (74-83 нмоль/см2) выделились необработанные плоды, хранившиеся в обычной и регулируемой атмосфере, это: ОА+контроль, 1-РА+контроль, 2-РА+контроль, 3-РА+контроль и вариант 3-РА+МЦП, где даже в обработанных плодах условия РА с повышенным экзогенным этиленом вызвали активный синтез углеводорода. Указанные варианты отличались и наиболее резким снижением содержания α-фарнезена (что свидетельствует об активном окислении углеводорода): к четвертому месяцу хранения на 55-70%, к шестому – на 70-80% от первоначального уровня, составляя 14-24 нмоль/см2, что соответствовало 100% поражению необработанных плодов загаром через 7 суток хранения при Т= +18…22оС
Рисунок 4. Влияние условий хранения на накопление α-фарнезена в кутикуле кожицы плодов.
Было показано, что послеуборочная обработка 1-МЦП ингибировала синтез α-фарнезена при всех условиях хранения, но с разной эффективностью, поэтому содержание углеводорода всегда ниже в обработанных партиях, по сравнению с контролем. Так, после месяца хранения содержание α-фарнезена в трех вариантах с послеуборочной обработкой плодов: 1-РА+МЦП, 2-РА+МЦП и ОА+МЦП было ниже на 30-50%, по сравнению с контрольными (74-83 нмоль/см2). К четвертому месяцу хранения, в обработанных плодах, хранившихся в условиях регулируемой атмосферы, также, как и в контрольных, было отмечено снижение содержания непредельного углеводорода, но менее интенсивное – на 30-40%, через 6,5 месяцев хранения – на 50% от первоначального уровня, составляя 18-28 нмоль/см2, потери от загара в этих партиях составляли 90, 7 и 0% соответственно. Как было показано, к концу хранения содержание α-фарнезена в контрольных и обработанных плодах находилось приблизительно на одном уровне 14-28 нмоль/см2, а потери от загара в этих партиях составляли от 0 до 100%. т.е. потери от заболевания не находятся в прямой зависимости от содержания α-фарнезена, однако, чем выше уровень его накопления, тем выше вероятность его окисления и поражения плодов загаром.
Более низкий уровень накопления и спокойная динамика изменения содержания углеводорода в обработанных 1-МЦП плодах соответствовали их относительно более устойчивому состоянию, низкой (по сравнению с контрольными вариантами) восприимчивости к загару.
В результате многолетних исследований установлено, что в плодах, пораженных загаром содержание α-фарнезена может составлять 15, 30, 50 нмоль/см2. При максимальных значениях показателя (более 70 нмоль/см2), загар чаще всего не обнаруживается, а проявляется после его снижения. Вероятно, что нет прямой зависимости между уровнем содержания α-фарнезена и возникновением загара, однако чем выше уровень накопления α-фарнезена, тем выше вероятность его окисления и поражения плодов заболеванием. Данные по уровню содержания и интенсивности снижения α-фарнезена могут быть рассмотрены в качестве дополнительных прогностических характеристик плода при оценке их восприимчивости к заболеванию. Очевидно, наряду с эндогенным этиленом и α-фарнезеном, участвуют в регулировании развития загара и другие эндогенные и экзогенные факторы.
Содержание α-фарнезена, вероятно, не влияет на товарное качество плодов.
КТ281. Содержание триенов (КТ281) увеличивалось по мере окисления α-фарнезена и появления загара, и снижалось в плодах с максимальной степенью развития заболевания, распадом тканей паренхимы. Логично, что максимальное содержание КТ281 после одного месяца хранения было отмечено в плодах вариантов, накопивших максимально высокое содержание α-фарнезена, это – 1-РА+контроль, 2-РА+контроль, 3-РА+контроль и ОА+контроль (19,7, 12,6, 12,0 и 10,4 нмоль/см2 соответственно) (Рисунок 4,5).
Рисунок 5. Влияние условий хранения на накопление КТ281 в кутикуле кожицы плодов.
Высокие уровни триенов в кутикуле кожицы указывали на высокую предрасположенность плодов выделенных вариантов к загару. И, действительно, в варианте 1-РА+контроль, с максимальным содержанием КТ281 отмечено раннее появление загара: уже в 1 декаде ноября потери составили 30%, увеличиваясь в комнатных условиях до 60% (в других вариантах потери либо отсутствовали, либо не превышали 5%). К середине января два варианта, отличающиеся высоким уровнем содержания кислорода в атмосфере (1-РА+контроль и ОА+контроль) отреагировали на сложившиеся условия хранения активным синтезом триена (36,7 и 39,6 нмоль/см2 соответственно), что совпадало с резким увеличением потерь от загара (90-100% в комнатных условиях), далее – очень резкое снижение его содержания, более выраженное в условиях 1-РА (рисунок 4), что соответствовало максимальной интенсивности загара, сопровождающееся распадом клеточных структур (твердость 4,7-4,8 кг/см2). Следует отметить, что при равно высоких уровнях накопления α-фарнезена и КТ281 в плодах вариантов 1-РА+контроль и ОА+контроль, в условиях ОА загар появляется позднее по срокам (на месяц), потери после четырех месяцев хранения на 50% ниже и степень проявления существенно ниже, чем в 1-РА. Вероятно, существенное влияние на развитие заболевания оказывают и другие эндогенные факторы, в том числе антиоксиданты (влияние антиоксидантов на развитие загара будет рассмотрено в соответствующем разделе статьи).
В результате многолетних исследований были получены неоспоримые доказательства того, что у многих изучаемых сортов (Антоновка обыкновенная, Мартовское, Синап Орловский, Северный Синап, Богатырь) величина потерь и интенсивность развития загара в 1-РА всегда выше, чем при других условиях хранения.
Анализ большого массива данных показывает, что при содержании в кожице плодов КТ281 в пределах 10 нмоль/см2 (особенно в первые 1-2 месяца хранения) загара может еще и не быть. Вероятно, для определенных сортов и партий плодов, должен пройти некоторый период времени с момента обнаружения критических уровней содержания КТ281 до появления загара (возможно, анатомическая структура и биохимический состав кожицы влияет на сроки и степень поражения заболеванием), но уже тогда необходимо принимать решение о сроках реализации партии.
Послеуборочная обработка 1-МЦП во всех условиях хранения (1-РА, 2-РА, 3-РА, ОА) ингибировала накопление триенов (КТ281) в кожице плодов на 50-80%, по сравнению с контролем. Так, после месяца хранения содержание КТ281 в обработанных партиях не превышало 5 нмоль/см2, после 4 месяцев — 10 нмоль/см2, стабильно более низким содержанием КТ281 в течение всего периода хранения отличался вариант 2-РА+МЦП (3,5-6,9 нмоль/см2), что свидетельствовало об устойчивости плодов к загару.
В вариантах 2-РА+контроль, 3-РА+контроль содержание КТ281 было примерно на одном уровне: после одного месяца хранения — 12,6 и 12,0 нмоль/см2 соответственно, при дальнейшем хранении максимальное содержание показателя увеличилось — 14,9 и 18,6 нмоль/см2 соответственно. Полученные значения существенно ниже, чем в 1-РА и ОА, при этом потери от загара в вариантах 2-РА+контроль, 3-РА+контроль появились на 1,5-2 месяца позднее, чем в 1-РА, а уровень потерь от заболевания в рассматриваемых вариантах ниже, чем в 1-РА и ОА. Полученные экспериментальные данные еще раз подтверждают ингибирующее влияние ультранизкого содержания кислорода -1,2 % (2-РА, 3-РА) на накопление продуктов окисления α-фарнезена и развитие загара, по сравнению с хранением в условиях повышенного содержания О2 (ОА,1-РА).
В результате проведенных исследований выраженных различий по влиянию условий хранения 2-РА и 3-РА на накопление триенов и развитие загара контрольных и обработанных партий плодов – не обнаружено. Очевидно, этому есть логичное объяснение: при прочих равных условиях (температура, СО2, О2), хоть различия по содержанию экзогенного этилена и существуют (Рис. 1), однако, в обоих случаях, содержание этилена существенно превышало физиологически активные концентрации гормона (5 ppm), что позволило нам выявить лишь некоторые тенденции его влияния на состояние продукции.
Для выявления роли экзогенного этилена на биохимические показатели и развитие загара плодов были проведены специальные исследования в условиях обычной и модифицированной атмосферы. По содержанию основных газов модифицированная атмосфера близка к условиям 1-РА (СО2 -3-9%, О2 -13-20%). Благодаря послеуборочной обработке ингибитором этилена удалось смоделировать атмосферу с низким содержанием экзогенного этилена — вариант МА+МЦП (в пакетах сорта Мартовское -1,8-4,8 ppm, Богатырь — 8-25 ppm). Высокий уровень содержания С2Н4 был получен при хранении в пакетах необработанных плодов — МА+контроль, МА-смесь (в пакетах сорта Мартовское – 107-286 ppm, Богатырь – 47-145 ppm). В условиях ОА содержание экзогенного этилена на протяжении всего периода хранения составляло 0,8-1,5 ppm (Рис. 6).
Рис. 6. Содержание экзогенного этилена в различных условиях хранения.
В результате проведенных исследований еще раз подтверждено, что максимальной интенсивностью созревания и, следовательно, более низкой твердостью отличаются необработанные плоды в условиях ОА. В условиях МА, за счет повышенного содержания СО2 процесс созревания (накопления эндогенного этилена) сдерживается до момента, пока высокий экзогенный этилен в атмосфере пакета (107-286 ppm), активируя синтез эндогенного этилена, сведет к минимуму различия между вариантами. Так, через 3 месяца хранения плодов сорта Мартовское содержание эндогенного этилена в вариантах ОА+контроль (ОА+к), МА+контроль (МА+к), МА-смесь+контроль (МАсм+к) составляло 389,9, 214,4 и 223,7 ppm, твердость – 6,0, 6,7 и 6,8 кг/см2, через 4,5 месяца хранения содержание показателей изменилось следующим образом: содержание эндогенного этилена составило 450,0, 170,2 и 148,6 ppm, твердость — 5,1, 4,9 и 4,8 кг/см2 соответственно (Рис.7,8).
Рисунок 7. Влияние условий хранения на накопление эндогенного этилена в плодах яблони.
Снижение содержания эндогенного этилена в плодах, а также низкие показатели твердости мякоти плодов после 4,5 месяцев хранения в МА свидетельствует о постклимактерическом этапе их жизни (периоде старения), очевидно, что интенсификация процессов созревания после 3 месяцев хранения, была вызвана высоким экзогенным этиленом. Таким образом, условия МА для контрольных плодов обеспечивают некоторые преимущества по сохранению твердости и сокращению потерь массы на ограниченном временном промежутке (1-4 месяца, в зависимости от сорта и физиологического состояния), далее – различия сглаживаются. Вероятно, накопление эндогенного этилена (процесс созревания) обусловлено, прежде всего, его автокатализом, однако экзогенный этилен может стимулировать синтез эндогенного и наоборот, что ограничивает использование МА для хранения плодов.
Рисунок 8. Влияние условий хранения на твердость и убыль массы плодов.
Как и в ранее рассмотренном опыте, максимальным содержанием КТ281 и высокой восприимчивостью к загару отличались контрольные плоды сорта Мартовское, хранившиеся в атмосфере с повышенным содержания кислорода и этилена. Так, через 3 месяца хранения в вариантах ОА+к, МА+к, МАсм+к содержание триена составляло 18,0, 28,3 и 26,4 нмоль/см2, потери от загара — 38,4, 75,6 и 80% соответственно. Т.е условия МА стимулировали накопление КТ281, повышали восприимчивость к загару. Учитывая, что уровень содержания кислорода в атмосфере ОА и МА находится на сопоставимо высоких уровнях (12-21%), в то время как физиологические проявления (подавление созревания) начинаются в плодах при снижении О2 до 7% и ниже, то, как показывают результаты наших исследований, существенным фактором, влияющим на содержание продуктов окисления α-фарнезена может быть уровень содержания экзогенного этилена. В нашем опыте в условиях МА (плоды сорта Мартовское) уровень содержания гормона в 100 раз и более выше, чем в ОА – 255 и 1,5 ppm, содержание триенов – 28,2 и 18,0 нмоль/см2, потери от загара – 75,6 и 38,4% соответственно, интенсивность развития загара в МА также существенно выше, чем в ОА (Рис. 6,9,10). В ранее рассмотренном опыте (сорт Мартовское) различия по содержанию экзогенного этилена в атмосфере 1-РА и ОА менее выражены – в 4-6 раз, но по содержанию КТ281, потерям и интенсивности развития загара – существенны. Важную роль экзогенного этилена в развитии загара доказывает следующий пример, после 4,5 месяцев хранения контрольных плодов сорта Северный синап в ОА с низким (1,5 — 2,5 ppm) и высоким (50,0 – 200,0 ppm) уровнем экзогенного этилена (в камере), содержание КТ281 составляло 2,92 и 34,7 нмоль/см2, потери от загара — 0,2 и 100% соответственно. Аналогичные данные получены на сортах Антоновка обыкновенная, Мартовское.
При видимых различиях между вариантами МА+к, МАсм+к по содержанию экзогенного этилена они также не были существенны, как и между вариантами 2-РА и 3-РА. Это нашло свое отражение в близких значениях биохимических показателей, характеризующих состояние плодов и одинаково высокой восприимчивости этих партий к загару (Рис.7-10).
Рисунок 9. Влияние условий хранения на накопление КТ281 в кутикуле кожицы плодов.
В результате проведенных исследований было показано, что послеуборочная обработка 1-МЦП обеспечивает эффективное ингибирование созревания плодов в условиях обычной (ОА+МЦП), модифицированной атмосферы с низким (МА+МЦП) и высоким содержанием экзогенного этилена (МАсм+МЦП). Так, через 3 месяца хранения плодов сорта Мартовское содержание эндогенного этилена составляло 44,7, 7,0 и 5,6 ppm, твердость – 7,8, 9,0 и 8,8 кг/см2 соответственно. После 4,5 месяцев хранения ситуация заметно изменилась: содержание эндогенного этилена увеличилось во всех вариантах, однако его наиболее активный синтез был вызван высоким экзогенным содержанием гормона — 160,8, 100,3 и 415,4 ppm, твердость плодов составила – 6,8, 8,1 и 6,4 кг/см2 соответственно. Т.е. условия МА (повышенный уровень СО2) в сочетании с обработкой 1-МЦП в течение 1-4 месяцев (в зависимости от сорта, исходного физиологического состояния и др.), могут обеспечивать ингибирование созревания и сохранение твердости, далее – различия сглаживаются, особенно в условиях высокого экзогенного этилена, что свидетельствует о нецелесообразности использования МА (даже в сочетании с 1-МЦП) для продолжительного хранения сортов, восприимчивых к загару. В то же время показано, что при низком содержании эндогенного и экзогенного этилена реально контролировать качество плодов (зрелость, твердость, загар), что может быть реализовано в рамках перспективной технологии ДРА[4-8]. Низкий уровень содержания кислорода — 0,4-0,6%, ингибирует синтез этилена в плодах (находящихся в предклимактерической стадии созревания) и атмосфере, синтез и окисление α-фарнезена и, следовательно, развитие загара. Однако наряду с преимуществами, технология ДРА имеет и недостатки, что ограничивает ее использование в мировой практике [4-8].
Заметным положительным проявлением 1-МЦП является сохранение одинаково высокой твердости плодов при низком и высоком содержании экзогенного этилена, однако это продолжается только до тех пор, пока удается ингибировать синтез эндогенного этилена.
Важным результатом исследований являются данные о том, что в кожице обработанных 1-МЦП плодов, хранившихся в атмосфере с низким уровнем экзогенного этилена (1,8-4,8 ppm) ниже содержание продуктов окисления α-фарнезена и выше устойчивость к загару, по сравнению с плодами, хранившимися в среде высоким содержанием гормона (124-286 ppm). Так, после двух месяцев хранения в плодах сорта Мартовское вариантов МА+МЦП и МАсм+МЦП содержание КТ281 составляло – 9,5 и 14,7 нмоль/см2, потери от загара в условиях холода отсутствовали, через сутки в комнатных условиях составляли 0 и 60%, через 7 дней – 50 и 100% соответственно (Рис. 9, 10).
Рисунок 10. Влияние условий хранения на потери от загара.
Вероятно, повышенное содержание этилена и, возможно, других мало летучих соединений в атмосфере, может стимулировать процессы, приводящие к накоплению триенов и повышению восприимчивости плодов к загару даже в обработанных 1-МЦП партиях. Вывод подтверждают экспериментальные данные, полученные на плодах сорта Богатырь, хранившихся в условиях МА (Рис. 6-10), а также в РА с ультранизким содержанием кислорода. Так, из семи камер (150-170 т) с обработанными 1-МЦП плодами после 6,5 месяцев хранения высокие потери от заболевания (27-37% — в камере и 95-100% — через 7 суток в комнатных условиях) были обнаружены в двух камерах, с высоким содержанием экзогенного этилена (81-169 ppm). В других камерах (экзогенный этилен до 10 ppm) – заболевание ни при хранении, ни при доведении до потребителя не проявлялось. Высокий уровень накопления этилена в камерах был связан с тем, что 75% объема камеры занимали плоды сортов Ветеран и Куликовское, отличающихся высокой интенсивностью выделения этилена, низкое содержание этилена поддерживалось при хранении одного сорта Богатырь, плоды которого были обработаны 1-МЦП.
Полученные данные подтверждают наши выводы о нецелесообразности хранения в одной камере плодов нескольких сортов и даже одного сорта, но с различной степенью зрелости. Для сохранения высокого качества плодов (вкус, твердость сочность отсутствие загара и др.) содержание этилена в плодах и атмосфере камеры необходимо поддерживать на уровне не более 5 ppm.
В результате исследований было доказано, что экзогенный этилен оказывает существенное влияние на качество плодов. Чем выше его содержание, тем выше содержание эндогенного этилена и выше степень зрелости плодов, особенно в условиях повышенного содержания кислорода. В стареющей продукции снижается содержание биологически активных веществ, твердость, повышается их восприимчивость к разложению, внутреннему побурению, грибной инфекции и др. То есть, чем выше содержание экзогенного этилена, тем выше содержание эндогенного этилена (и наоборот), тем ниже товарные и потребительские качества плодов. Экзогенный этилен способствует накоплению КТ281 и развитию загара. Установлено, что постоянное поддержание низкого уровня этилена (<1ppm) в камере с РА и внутри плода (0,1- 1,0 ppm) эффективно сдерживает биосинтез α-фарнезена и продуктов окисления и обеспечивает защиту плодов многих сортов от загара и других физиологических заболеваний, способствует сохранению твердости, сочности, вкусовых и товарных качеств[3,4,18,19].
Таким образом, условия хранения оказывают существенное влияние на накопление КТ281 в кутикуле кожицы плодов. Хранение плодов в среде с высоким содержанием кислорода (ОА, 1-РА, МА) – активирует накопление триенов. Высокий экзогенный этилен (возможно и другие летучие соединения) способствует накоплению КТ281 и развитию загара (1-РА, МА), чем выше его содержание, тем выше восприимчивость плодов к заболеванию. Сочетание высоких уровней экзогенного этилена и кислорода (1-РА, МА) приводит к ранним срокам появления и высоким уровням накопления КТ281, проявляющееся в побурении кожицы. Послеуборочная обработка плодов этих вариантов 1-МЦП на определенный период времени (в зависимости от сорта) ингибирует накопление КТ281 и развитие загара. Ультранизкое содержание кислорода способствует ингибированию накопления и, особенно, окисления α-фарнезена (2-РА), в сочетании с послеуборочной обработкой 1-МЦП эффективность технологии заметно возрастает, т.к. синергетическое действие активных факторов позволяет в определенной степени ингибировать/контролировать фазы развития загара и, следовательно, увеличивать продолжительность хранения сортов с различной восприимчивостью к заболеванию.
Триены (КТ281) — токсичный продукт для клеток кожицы плодов. Его содержание напрямую влияет на развитие загара. Чем выше интенсивность, уровень и чем раньше сроки накопления КТ281, тем выше потери и интенсивность проявления загара на плодах.Однако, уровень содержания триенов, при котором признаки расстройства становятся очевидны, может заметно отличаться. Так, у сорта Моргендуфт загар появляется при содержании КТ281 8 нмоль/см2, у сортов Мартовское, Гренни Смитт — при более высоком уровне (12-30 нмоль/см2), даже в пределах одного сорта при одном уровне триенов партии плодов могут проявлять различную восприимчивость к заболеванию. Очевидно, что наряду с продуктами окисления α-фарнезена, на развитие загара влияют и другие биохимические соединения кожицы плодов, содержание которых определяется генотипом сорта и комплексом экзогенных и эндогенных факторов.
КТ281. Северный Синап. Уровень накопления α-фарнезена у плодов зимнего сорта Северный Синап в целом существенно ниже, чем у сорта Мартовское. Особенности сорта в сочетании с условиями хранения в 2-РА и послеуборочной обработкой 1-МЦП способствовали столь глубокому ингибированию синтеза α-фарнезена, что даже через 6,5 месяцев хранения его содержание не превышал 6,4 нмоль/см2.
Уровень накопления КТ281 , как и восприимчивость к загару, у плодов зимнего сорта Северный Синап в целом также существенно ниже, чем у сорта Мартовское. Максимальным накоплением триенов отличались три варианта: 1-РА+контроль, 3-РА+контроль, ОА+контроль (10-16 нмоль/см2), более низкому уровню накопления способствовали условия 2-РА (6,7 нмоль/см2), где лишь к концу хранения содержание изучаемого показателя достигло 10,7 нмоль/см2.
Послеуборочная обработка во всех условиях хранения (1-РА, 2-РА, 3-РА, ОА) ингибировала накопление триенов (КТ281): до конца хранения (6,5 месяцев) содержание показателя не превышало 6 нмоль/см2, минимальным содержанием (менее 0,6 нмоль/см2 ) в течении всего периода хранения отличался вариант 2-РА+МЦП.
Влияние условий хранения на накопление антиоксидантов в кожице плодов.
Антиоксиданты – это соединения, способные блокировать вредное воздействие на организм свободных радикалов, защищать от заболеваний, старения. К одним из самых эффективных антиоксидантов относятся природные полифенолы, в том числе полифенолы плодов.
Рано снятые плоды отличаются низким содержанием антиоксидантов, у поздно снятых – содержание увеличивается (усиливается основная и покровная окраска, которая зависит в т.ч. от комплекса фенольных соединений), как и возрастает устойчивость к загару (рис. 11). То есть содержание антиоксидантов увеличивается при созревании плодов на дереве и продолжается этот процесс — в начальный период хранения, что подтверждает роль эндогенного этилена в стимуляции синтеза антиоксидантов (в том числе фенольных соединений), после некоторого периода хранения их содержание снижается [11,19,20]. Существенное влияние на сохранение антиокислительного комплекса могут оказать условия хранения и послеуборочная обработка плодов 1-МЦП.
Рисунок 11. Влияние содержания антиоксидантов (антоцианов) в кожице плодов сорта Мартовское на развитие загара.
Мартовское. В результате наших исследований было показано, что условия хранения, обеспечивающие максимальное ускорение созревания (максимальный уровень эндогенного этилена) стимулируют синтез и накопление антиоксидантов (в первые 6-8 недель хранения) – это условия ОА. Ультранизкое содержание О2 (1,2%), повышенный уровень СО2 (1,2%) и, послеуборочная обработка 1-МЦП заметно ингибируют эти процессы. Так, в вариантах ОА+к и ОА+МЦП суммарное содержание фенольных соединений (СФС) в кожице плодов после трех месяцев хранения составляло 1326,8, 1242, содержание рутина — 320, 241,8 мг/100г сыр.м. соответственно. В условиях РА эти показатели заметно ниже, в вариантах 2-РА+к и 2-РА+МЦП -1151,4, 1100 и 233, 190,1 мг/100г сыр.м. соответственно (Рис. 12).
Как мы неоднократно отмечали, условия 1-РА и МА стимулируют синтез эндогенного этилена, однако, это не приводит к увеличению содержания фенолов, а даже наоборот, способствует снижению их содержания. Вероятно, одной из причин этому — ингибирующее влияние повышенного содержания СО2 на синтез антиоксидантов. Кроме того, не исключена возможность, что фенолы кожицы плодов с первых недель хранения включаются в блокирование реакций свободно-радикального окисления α-фарнезена синтез и окисление которого провоцируют условия 1-РА и МА (высокий экзогенный этилен и кислород). В результате, через 3 месяца хранения содержание СФС и рутина в кожице плодов вариантов 1-РА+к и МА+к было на 30-60% ниже, чем в варианте ОА+к (Рис. 12,13). Послеуборочная обработка 1-МЦП в средах с высоким содержанием кислорода и этилена с одной стороны, ингибируя созревание сдерживала синтез не только фенолов, но и α-фарнезена и продуктов его окисления, защищая тем самым антиоксиданты от разрушения. Так, в кожице плодов вариантов 1-РА+МЦП и МА+МЦП содержание СФС составляло 982,7, 1106,4, рутина — 176, 194,3 мг/100г сыр.м. соответственно (Рис. 12,13), что на 13-40% выше, чем в контрольных вариантах (1-РА+к, МА+к).
Рисунок 12. Влияние условий хранения на содержание фенольных соединений в кожице плодов.
Содержание фенольных соединений в кожице резко снижается при появлении загара и увеличении интенсивности его развития, что наблюдается во всех условиях хранения. По времени это чаще всего совпадает с мощным синтезом КТ. Так, через 4,5 месяца хранения в вариантах ОА+к, 1-РА+к, 2-РА+к содержание СФС снизилось на 25, 40 и 21%, а содержание рутина – на 35, 76 и 30% соответственно, по сравнению с показателями, полученными после трех месяцев хранения. Потери от загара через 5 месяцев хранения составили 70, 100, 50% соответственно. Максимальное снижение антиоксидантов отмечено в условиях 1-РА, с максимальными потерями от загара.
Рисунок 13. Влияние условий хранения на содержание фенольных соединений в кожице плодов.
Послеуборочная обработка 1-МЦП, сдерживая созревание и синтез фенолов, обеспечивает в какой-то степени сохранение антиоксидантов на протяжении всего периода хранения, за счет ингибирования синтеза и окисления α-фарнезена. Вероятно, по этой причине в вариантах ОА+МЦП и 2-РА+МЦП содержание СФС и рутина после трех и пяти месяцев хранения изменились незначительно, а плоды проявляли устойчивость к загару. В условиях 1-РА даже в обработанных плодах содержание антиоксидантов снизилось на 21, 35% соответственно, а плоды повреждались загаром.
Аналогичные результаты были получены на сорте Мартовское в опыте с ОА и МА (Рис. 13 ).
Таким образом, процессы созревания стимулируют синтез антиоксидантов. В максимальной степени полифенолы накапливаются в условиях ОА, где накопление эндогенного этилена ингибируется только пониженной температурой. Повышенный уровень содержания СО2 (1,2%) и ультранизкое содержание О2, послеуборочная обработка 1-МЦП заметно ингибируют накопление антиоксидантов. Высокий уровень содержания α-фарнезена и продуктов его окисления в кутикуле кожицы плодов приводят к резкому снижению содержания фенолов и высоким потерям от загара.
На основе анализа литературных данных, результатов проведенных исследований установлено прямое влияние антиоксидантов на развитие поверхностного загара плодов яблони[19-23], что подтверждают и следующие примеры. При поздних сроках съема и накоплении естественных антиоксидантов плоды характеризуются низким содержанием триенов (но не α-фарнезена и продуктов его окисления) и высокой устойчивостью к загару, по сравнению с плодами, собранными в ранние сроки, с экстенсивных насаждений, где недостаточный и неравномерный световой режим сдерживает накопление антиоксидантов. Хранение плодов с исходно низким содержанием антиоксидантов, в условиях, сдерживающих их биосинтез (ультранизкое содержание кислорода, повышенный уровень углекислого газа) – резко повышает потери от загара. В этом случае, послеуборочная обработка 1-МЦП, также ингибирующая синтез антиоксидантов, является для плодов дополнительным стрессором, в результате которого она может оказаться малоэффективной и даже усилить развитие заболевания. Такие факты имели место при хранении в 2-РА плодов сортов Антоновка обыкновенная, Мартовское и Богатырь, снятых в очень ранние сроки (14.08, 17.08 и 19.08 соответственно), через три месяца хранения потери от загара составляли в контрольных партиях 70, 80 и 50%, в обработанных — . 90, 95 и 70% соответственно.
Неоспоримым доказательством определяющей роли антиоксидантов в развитии загара является послеуборочная обработка плодов искусственными антиоксидантами (сантохин, ионол, этоксихин) существенно снижающими потери от заболевания [11,20,21,23]. Искусственные антиоксиданты не ингибируют созревание и синтез α-фарнезена, а сдерживают накопления КТ281, предохраняя плоды от повреждений. Следует отметить, что партии плодов одного сорта с близким содержанием антиоксидантов могут проявлять различную восприимчивость к заболеванию, что зависит от содержания в кутикуле кожицы КТ281 и, возможно, комплекса других эндогенных и экзогенных факторов.
Влияние условий хранения на качество плодов, потери от загара.
Качество плодов определяется различными показателями, которые всесторонне характеризуют свойства, потребительскую ценность и их назначение (калибр, форма, окраска, аромат, вкус, свежесть, состояние зрелости, лежкоспособность, дефекты кожицы и мякоти и др.). Основные потери при хранении плодов сорта Мартовское составляют потери от загара (до 100%), в меньшей степени восприимчивы к этому заболеванию плоды сорта Северный Синап. Повреждения, вызванные загаром, существенно сокращают сроки хранения, снижают товарные качества и цену реализации продукции (Рис. 14).
Рис. 14. Загар на плодах сорта Мартовское. РА без обработки 1-МЦП, 5 месяцев хранения.
Появление загара на плодах яблони связывают с рядом последовательных реакций, которые начинаются при созревании плодов в предуборочный период с синтеза в кожице a — фарнезена и заканчиваются в период хранения гибелью эпителиальных клеток, что проявляется в виде внешних признаков этого заболевания – побурения кожицы.
В соответствии с существующей теорией имеется несколько условных фаз развития загара [24,25]. Первая фаза протекает в течение первых 1-2 месяцев после уборки и сопровождается накоплением a — фарнезена в кутикуле кожицы плодов. Наличие в камере хранения этилена усиливает эту реакцию (условия 1-РА, МА, 3-РА и в меньшей степени 2-РА).
Вторая фаза развития загара характеризуется снижением уровня α-фарнезена, вследствие его самоокисления, и повышением уровня коньюгированных триенов (перекисных радикалов), которые обладают высокой химической активностью и способны дезактивировать белки, окислить липиды мембран, образуя полимеры и нарушая функционирование органелл в клетке. Окисление фарнезена в коньюгированные триены, требует определенного уровня кислорода (условия ОА, 1-РА, МА, и в меньшей степени 2-РА и 3-РА). Этот период продолжается обычно около 1-2 месяцев без каких-либо заметных внешних проявлений.
Третья стадия начинается, когда повреждения ткани становятся достаточными, чтобы вызвать побурение. Это как раз тот период, когда проявляется защитное действие от обработок антиоксидантами.
Таким образом, необходимыми условиями ингибирования загара в период хранения являются: низкий уровень эндогенного и экзогенного этилена (менее 1-2 ppm) и ультранизкое содержание кислорода. В связи с этим, значительный интерес представляет технология хранения плодов в динамичной регулируемой атмосфере (ДРА), с содержанием кислорода – 0,4-0,6%, в таких условиях ингибируется развитие загара, обеспечивается сохранение высокого качества плодов многих сортов, однако и эта технология имеет недостатки, что ограничивает ее использование [5-8,18,31-33]. Коррекция содержания кислорода в ДРА осуществляется по принципу обратной связи с состоянием продукции, которое отслеживается по флуоресценции хлорофилла, концентрации газообразного этанола, коэффициенту дыхания и другим показателям [8,31-37]. По данным зарубежных исследователей технология с ультранизким содержанием кислорода (0,8-1,5%) в сочетании с послеуборочной обработкой плодов 1-МЦП по эффективности равнозначна ДРА [5,6]. В настоящий период разрабатываются, осваиваются и другие технологии хранения плодов. Эффективным технологическим приемом в защите плодов от загара является снижение содержание кислорода в камере с РА до 0,7-0,8% [5,6,18,26,27,28]. Система хранения плодов SWINGLOS® также обеспечивает защиту от заболевания, суть ее заключается в том, что в первые две недели хранения содержание кислорода в камере поддерживается на уровне 0,25-0,5%, т.е. плоды подвергаются кислородному стрессу (IhOS). В дальнейшем уровень кислорода поддерживается в пределах 1,2-1,5%. Предполагается, что низкокислородный стресс способствует образованию этанола, который может сдерживать окисление a — фарнезена, образование триенов и поражение клеточных структур [22,27,29]. Рассеивание паров этанола в воздухе холодильной камеры в сочетании с хранением в РА также может способствовать снижению потерь от загара для некоторых сортов яблони [27]. Обработка перед хранением плодов эмульсиями очищенного кукурузного масла ингибировала развитие загара у некоторых сортов яблони и груши. Более низкое содержание α-фарнезена в обработанных плодах видимо связано с его поглощением маслянистыми веществами на поверхности кожицы, а положительное действие на сохранение твердости, зеленой окраски, кислот – с модифицированной внутренней атмосферой, вызванной масляным покрытием [19,30]. Однако, каждая технология имеет свои преимущества и недостатки [4-8,18,19,22,26-37], поэтому необходимо сравнительными испытаниями установить для каких сортов и какого качества плодов, сроков хранения, наличия материально-технической базы, квалификации кадров и для каких сегментов рынка использовать указанные технологии хранения плодов. В одном хозяйстве могут использоваться несколько технологий.
По современным представлениям, поражение плодов загаром определяется своеобразным балансом между уровнем накопления в кутикуле кожицы антиоксидантов (фенольных соединений и др.) и коньюгированных триенов (антиоксиданты/КТ281), чем ниже это соотношение, тем выше вероятность появления загара [4,18,19,20]. Вероятно, в соответствии с предложенной формулой, заболевание появляется в следующих случаях: при изначально низких запасах естественных антиоксидантов (ранний срок съема, ингибирующее воздействие погодных и агротехнических факторов), либо когда они резко снижаются при хранении (на погашение реакций свободно-радикального окисления); при изначально высоком содержании α-фарнезена и триенов (при съеме плодов), что может быть спровоцировано стрессовыми агротехническими (обрезка, удобрения и др.) и погодными условиями (температура, осадки, солнечная активность и др.) при формировании плодов, либо активацией их синтеза в процессе хранения. При одновременном неблагоприятном сочетании факторов, приводящих к снижению индекса антиоксиданты/КТ281, время появления загара сокращается, а его интенсивность усиливается. Отсутствие данных по содержанию антиоксидантов в кожице плодов снижает точность прогноза, но при любом сочетании факторов хранения и содержании КТ281≥ 10 нмоль/см2 (у восприимчивых к загару сортов) риски поражения плодов заболеванием при хранении и доведении до потребителя очень высоки.
В настоящее время наиболее надежным средством защиты, либо существенного сокращения потерь от загара является послеуборочная обработка плодов ингибитором биосинтеза этилена. При этом, как показывают результаты исследований, условия хранения могут настолько серьезно повлиять на лежкоспособность и увеличить восприимчивость плодов к загару, что даже обработка 1-МЦП может оказаться малоэффективной, а хранение необработанных плодов изначально – не целесообразно.
Рис. 15. Влияние условий хранения на поражение плодов сорта Мартовское загаром. 5 месяцев хранения.
Мартовское. 1-РА. В результате проведенных исследований было доказано, что хранение плодов в 1-РА (среды с высоким содержанием кислорода (16-18%) и повышенным содержанием углекислого газа (3-4%), повышенным содержанием экзогенного этилена (38-78 ppm)) не дает абсолютно никаких преимуществ по сохранению качества продукции (вкус, сочность, твердость и др.), но увеличивает потери от загара, даже по сравнению с ОА (рис.15,16). Очевидно, что сочетание активных факторов в 1-РА (высокий этилен, кислород) вызывают биохимические изменения в плодах, приводящие к развитию загара.
Рисунок 16. Влияние условий хранения на потери от загара.
Послеуборочная обработка 1-МЦП в условиях 1-РА также не гарантирует защиту от заболевания. Как мы уже отмечали, в таких условиях хранения (1-РА, МА) много стрессовых факторов, приводящих к разбалансировке гомеостаза. Повышенный уровень СО2 в определенной мере ингибирует созревание (что должно обеспечивать сохранение твердости) и синтез фенолов, но повышенный экзогенный этилен стимулирует созревание и снижение твердости, способствует накоплению α-фарнезена и триенов. Высокий уровень содержания кислорода в среде обеспечивает свободное окисление α-фарнезена. Резкие изменения статуса плодов отразились в биохимических показателях и соотношениях, характеризующих восприимчивость к загару. Индексы загара — СФС/КТ281 и рутин/ КТ281 в варианте 1-РА+контроль через три месяца хранения были минимальными и составляли 45,4 и 7,0 соответственно (что в несколько раз меньше, чем в вариантах ОА+к и 2-РА+к) (Таблица 3). Низким индексам соответствовало раннее появлению загара на необработанных плодах (1 декада ноября – 30%), при доведении до потребителя (7 дней хранения при Т=+20-220С) потери от заболевания составили 60%, в условиях ОА – потери на тот период не обнаружены. Вариант 1-РА+контроль отличался максимальной интенсивностью и 100% поражением плодов загаром уже после трех месяцев хранения. Универсальные свойства послеуборочной обработки 1-МЦП (ингибирование эндогенного этилена, α-фарнезена, продуктов его окисления, ингибирование синтеза антиоксидантов) проявились в 5-кратном увеличении соотношений СФС/КТ281 и рутин/ КТ281 (200,6 и 35,9 соответственно), по сравнению с необработанными плодами, что обеспечивало защиту от загара в течение трех месяцев хранения. В дальнейшем — ингибирующий эффект обработки и антиоксидантная составляющая плодов не обеспечили нейтрализацию свободно-радикального окисления α-фарнезена, индексы загара снизились до 80,1 и 12,2 соответственно, после 4 месяцев хранения 30% плодов варианта 1-РА+МЦП поражались загаром при доведении до потребителя. Дегустационная оценка контрольных и обработанных плодов после 4 месяцев хранения составляла – 1,0 и 2,5 балла, твердость -5,5 и 7,1 кг/см2 , потери от загара при хранении 100 и 0%, при доведении до потребителя – 100 и 30% соответственно.
Таблица 3. Влияние условий хранения, послеуборочной обработки 1-МЦП на индексы загара. Мартовское.
Вариант |
СФС/КТ281 |
Рутин/ КТ281 |
Продолжительность хранения, месяцы |
3,0 |
4,0 |
3,0 |
4,0 |
ОА+контроль |
127,6 |
25,1 |
30,8 |
5,2 |
ОА+МЦП |
1035,5 |
147,3 |
201,5 |
23,1 |
1-РА+контроль |
45,4 |
14,5 |
7,0 |
0,9 |
1-РА+МЦП |
200,6 |
80,1 |
35,9 |
12,2 |
2-РА+контроль |
91,4 |
60,8 |
18,5 |
10,9 |
2-РА+МЦП |
314,3 |
162,5 |
54,3 |
29,0 |
МА. По содержанию основных газов модифицированная атмосфера близка к условиям 1-РА (СО2 -3-9%, О2 -13-20%). Ответная реакция необработанных плодов варианта МА+к на стрессовые условия хранения аналогична варианту 1-РА+к. Вероятно, сформировавшееся сочетание компонентов газовой среды (высокий уровень СО2) способствовало ингибированию накопления антиоксидантов в кожице плодов, высокий экзогенный этилен стимулировал синтез, а кислорода — окисление α-фарнезена, избыток свободных радикалов вызвал поражение клеток, проявившееся в побурении кожицы. Индексы загара — СФС/КТ281 и рутин/ КТ281 в варианте МА+контроль через три месяца хранения были минимальными и составляли 28,6 и 6,2 соответственно (что в несколько раз меньше, чем в вариантах ОА+к), а потери от загара – максимальными (рисунок 10, таблица 4).
Следует отметить, что в условиях 1-РА и МА плоды, пораженные загаром, существенно отличаются от плодов, пораженных этим заболеванием, но хранившихся в других условиях регулируемой и обычной атмосферы (условия 2-РА, 3-РА и ОА) высокой интенсивностью побурения, глубиной проникновения в подкожные слои. Вероятно, усилению заболевания способствует комплексное влияние факторов: высокое содержание кислорода (16-18%) и углекислого газа (1-РА — 3-4%, МА – 3-9%), высокий уровень содержания экзогенного этилена (1-РА – до 78, МА – до 280 и более ppm). Кроме того, в атмосфере с высоким содержанием этилена, что чаще всего бывает при недостаточной вентиляции/воздухообмене (условия 1-РА, МА и др.), могут присутствовать мало летучие соединения, выделяющиеся плодами в процессе их жизнедеятельности и стимулирующие развитие загара. Было отмечено, что при высоком содержании кислорода, чем выше содержание в атмосфере камеры этилена и СО2, тем раньше сроки появления и выше степень проявления загара.
Таблица 4. Влияние условий хранения, послеуборочной обработки 1-МЦП на индексы загара. Мартовское. 3 месяца хранения.
Вариант |
СФС/КТ281 |
Рутин/ КТ281 |
ОА+контроль |
72,7 |
19,0 |
ОА+МЦП |
214,0 |
46,8 |
МА+контроль |
28,6 |
6,2 |
МА+МЦП |
116,5 |
20,5 |
МАсмесь+контроль |
30,8 |
6,9 |
МАсмесь+МЦП |
75,7 |
13,6 |
Таким образом, условия 1-РА и МА отличаются от других, рассмотренных нами условий хранения, сочетанием факторов, одновременно воздействующих и негативно влияющих на качество плодов, стимулирующих процессы, проходящие в два условных этапа развития загара. Полученные данные свидетельствуют о нецелесообразности хранения необработанных партий плодов в условиях 1-РА, МА.
Послеуборочная обработка 1-МЦП сглаживает воздействие максимально сложных условий хранения в МА, при этом на результаты хранения заметное влияние оказывает содержание экзогенного этилена в атмосфере. Индексы загара в варианте с низким экзогенным этиленом (МА+МЦП) заметно выше, чем в варианте с высоким его содержанием (МАсм+МЦП) (Таблица 4). Через три месяца хранения соотношение СФС/КТ281составляло 116,5 и 75,7, рутин/ КТ281 -20,5 и 13,6, потери от заболевания при хранении – 0 и 0%, после суток хранения при Т+20..220 С — 0 и 80%, после 7 суток – 50 и 100% соответственно. При дальнейшем хранении процессы созревания активизируются, экзогенный этилен и, возможно, другие мало летучие соединения стимулируют синтез α-фарнезена, триенов, что сглаживает различия между вариантами, резко увеличивает восприимчивость плодов к загару.
Полученные данные еще раз доказывают, что для эффективного хранения плодов уровень экзогенного этилена не должен превышать 2-5 ppm, что возможно при низком эндогенном содержании гормона.
Дегустационная оценка контрольных и обработанных плодов после 3 месяцев хранения в МА составляла – 1,0 и 4,5 балла, твердость -6,7 и 9,0 кг/см2 , потери от загара при хранении 75,6 и 0%, при доведении до потребителя – 100 и 50% соответственно.
2-РА. Эффективное хранение плодов обеспечивается в РА с ультранизким содержанием кислорода (2-РА). Ингибирование эндогенного этилена (созревания) и, следовательно, сохранение твердости обеспечивается низким содержанием О2 (1,2%) и повышенным СО2 (1,2%), эти же факторы прямым либо косвенным образом сдерживают синтез и окисление α-фарнезена (2 фаза развития загара) накопление триенов и сдерживают синтез фенолов, что снижает антиокислительный потенциал плодов. В результате, через три месяца хранения, соотношения СФС/КТ281 и рутин/ КТ281 в варианте 2-РА+контроль составляли 91,4 и 18,5 соответственно. То есть индексы загара примерно в два раза выше, чем в варианте 1-РА+к, но в 1,4-1,7 раза ниже, чем в варианте ОА+к. В соответствии с этим, потери от загара были ниже, чем в 1-РА, но выше, чем в ОА. Послеуборочная обработка 1-МЦП усиливает преимущества хранения в 2-РА (более глубокое ингибирование созревания, надежное сохранение твердости) и нивелирует недостатки этой технологии сдерживая синтез α-фарнезена, триенов, что обеспечивает сохранение антиоксидантов и компенсирует одно из свойств обработки 1-МЦП — ингибирование их синтеза. В результате индексы загара — СФС/КТ281 и рутин/ КТ281 в варианте 2-РА+МЦП составляли 314,3 и 54,3 соответственно (Таблица 3), что в три раза выше, по сравнению с контролем и соответствовало устойчивому состоянию плодов, отсутствию загара. Дегустационная оценка контрольных и обработанных плодов после 4 месяцев хранения составляла – 3,0 и 4,5 балла, твердость -7,1 и 9,3 кг/см2 , потери от загара при хранении — 30 и 0%, при доведении до потребителя – 60 и 0% соответственно.
Следует отметить, что при хранении сорта Мартовское (и других сортов с высокой восприимчивостью к загару) в условиях РА (с ультранизким содержанием кислорода) риски поражения плодов загаром велики. Они усиливаются при нарушении сроков съема, загрузки камер, обработки препаратом Фитомаг®, выхода камер на режим хранения, отклонения от рекомендуемых параметров хранения, увеличения содержания экзогенного этилена, особенно в первые месяцы хранения (что стимулирует 1 фазу развития загара), увеличение сроков хранения и др..
3-РА. Условия 3-РА отличаются от 2-РА более высоким содержанием экзогенного этилена. Повышенное содержание гормона в атмосфере стимулирует созревание и старение плодов, проявляющееся в снижении твердости, накоплении фарнезена и продуктов его окисления, повышении восприимчивости к загару. Дегустационная оценка контрольных и обработанных плодов после 4 месяцев хранения составляла – 2,5 и 4,5 балла, твердость — 4,8 и 8,9 кг/см2 , потери от загара при хранении — 35 и 0%, при доведении до потребителя – 60 и 5% соответственно.
ОА. В условиях ОА единственный фактор хранения — пониженная температура ингибирует интенсивность дыхания и скорость созревания плодов.
Период послеуборочного дозревания в условиях ОА составляет 1,5-3 месяца (в зависимости от сорта, исходного физиологического состояния и др.). В дальнейшем — плоды резко теряют товарные и вкусовые качества (твердость, сочность и др.), а их восприимчивость к физиологическим и микробиологическим заболеваниям существенно возрастает.
Вероятно, в условиях ОА при невысоком содержании экзогенного этилена (0,7 — 3,5 ppm и более), физиологическое состояние необработанных плодов, в первую очередь обусловлено содержанием эндогенного этилена, который стимулирует свое собственное образование, накопление антиоксидантов (в первые недели хранения), стимулирует процессы распада клеточных структур и снижение твердости, стимулирует накопление α-фарнезена. А вот образование продуктов его окисления в кутикуле кожицы зависит, в том числе, и от содержания антиоксидантов. Индексы загара — СФС/КТ281 и рутин/ КТ281 в варианте ОА+контроль через три месяца хранения составляли 127,6 и 30,8 соответственно, что значительно выше, чем в необработанных плодах, хранившихся в 2-РА (91,4 и 18,5), 1-РА (45,4 и 7,0 соответственно). Потери от загара в вышеотмеченных вариантах составляли 7,0, 3,0 и 90% соответственно.
После 4 месяцев хранения резкое увеличение содержания КТ281 обусловлено снижением антиокислительного потенциала кутикулы кожицы плодов (антиоксиданты расходуются в результате окислительно-восстановительных реакций). Индексы загара — СФС/КТ281 и рутин/ КТ281 снизились до 25,1 и 5,2 соответственно и, как следствие – 90% плодов после 7 дней хранения в комнатных условиях было поражено загаром.
Послеуборочная обработка 1-МЦП в условиях ОА ингибирует синтез этилена, α-фарнезена, триенов, а также фенолов, но в меньшей степени, чем в РА (в дальнейшем — обеспечивая их сохранение), обеспечивает сохранение твердости, а условия ОА стимулируя синтез эндогенного этилена (созревание) стимулируют синтез антиоксидантов и распад клеточных структур, стимулирует синтез α-фарнезена, триенов. В результате такого баланса, обработанные 1-МЦП плоды в течение 3-4,5 месяцев отличаются высокими товарными качествами (твердостью), устойчивостью к загару. Максимальные значения соотношений — СФС/КТ281 и рутин/ КТ281 через три месяца хранения были отмечены именно в варианте ОА+МЦП – 1035,5 и 201,5 соответственно, что в 6-8 раз выше, по сравнению с контролем. Плоды при этом проявляли устойчивость к загару, как при хранении, так и при доведении до потребителя. После четырех месяцев хранения индексы загара заметно снизились (147,3 и 23,1 соответственно), однако оставались на высоком уровне, а плоды не поражались загаром.
Дегустационная оценка контрольных и обработанных плодов после 4 месяцев хранения составляла – 2,0 и 4,3 балла, твердость -5,3 и 6,5 кг/см2 , потери от загара при хранении — 50 и 0%, при доведении до потребителя – 90 и 0% соответственно.
Хранение плодов сорта Мартовское в условиях ОА+Фитомаг® в течение 4-4,5 месяцев считаем наиболее надежным и экономически целесообразным, т.к. их качество равнозначно плодам, хранившимся в РА, технология дешевле и доступнее для производителей, а риск развития загара меньше.
Как мы уже отмечали, высокий уровень экзогенного этилена в камере с ОА (40-170 ppm) может вызвать развитие загара не только у восприимчивых к нему сортов Антоновка обыкновенная, Мартовское, но и у менее восприимчивых – Синап Северный, Богатырь как у контрольных, так и у обработанных 1-МЦП партий. В связи с этим, в ОА необходимо постоянно осуществлять контроль за содержанием экзогенного этилена, снижая его до минимально возможного уровня (проветривание, вентиляция).
Таким образом, стимулируют появление загара все факторы хранения, стимулирующие накопление КТ281, это – высокий уровень содержания кислорода, экзогенного этилена, а также факторы, ингибирующие синтез антиоксидантов — низкий уровень кислорода, высокий уровень содержания углекислого газа, которые, в свою очередь, ингибируя созревание, способствуют сохранению качества плодов. Несбалансированное сочетание факторов хранения может усилить потери от заболевания.
Послеуборочная обработка 1-МЦП сглаживает, в течение определенного периода, воздействие негативных для сохранения качества плодов, факторов хранения (в т.ч. высокий уровень кислорода, экзогенного этилена), обеспечивая устойчивость, либо существенное снижение потерь от загара.
Риски поражения плодов загаром многократно увеличиваются при съеме плодов в ранние сроки, с интенсивно растущих, молодых, малоурожайных, сильно обрезанных деревьев, из насаждений экстенсивного типа [4,11]. Отличительные особенности таких плодов — низкий уровень содержания кальция (кальций обеспечивает сохранение клеточных структур, противодействует влиянию стресс-факторов) и дисбаланс других элементов минерального состава [12-14], низкий антиокислительный потенциал, высокий уровень накопления непредельных углеводородов, окисление которых вызывает развитие заболевания. Создание и поддержание условий, способных обеспечивать оптимальный минеральный, гормональный и антиоксидантный статус плодов возможно в садах интенсивного типа с максимально управляемыми факторами (световой, водно-воздушный режим, минеральный и гормональный баланс).
Северный Синап. У плодов сорта Северный Синап сроки поражения плодов загаром намного позднее, а величина потерь – ниже, чем у сорта Мартовское (Рис. 16). Так, после трех месяцев хранения потери от загара у плодов зимнего сорта Северный Синап при всех условиях хранения – отсутствовали. После четырех месяцев хранения заболевание проявилось, как и у сорта Мартовское, сначала в варианте 1-РА+ контроль (при хранении — 10%, при доведении до потребителя — 50%), в вариантах 2-РА+контроль и ОА+контроль – лишь при доведении до потребителя (5-10%). После 6 месяцев вся партия плодов, хранившаяся в условиях 1-РА, состояла из бурых, пораженных загаром, непригодных для потребления плодов, существенные потери были отмечены также в условиях ОА (40% при хранении, 70% — при доведении до потребителя), 2-РА (10% при хранении, 25% — при доведении до потребителя). В условиях 3-РА потери от заболевания отсутствовали.
Послеуборочная обработка ингибитором биосинтеза этилена обеспечила полную защиту плодов от загара после шести месяцев хранения в условиях ОА, 2-РА, 3-РА. Условия 1-РА, даже у обработанных плодов спровоцировали развитие заболевания (5% при хранении, 10% — при доведении до потребителя, степень поражения — слабая).
Для экономически обоснованного применения послеуборочной обработки плодов ингибитором биосинтеза этилена в различных условиях хранения, на базе результатов биохимических исследований, оценке товарного качества (твердость, свежесть, сочность, внешний вид), дегустационной оценке, данных о потерях от загара, определены сроки хранения плодов, реализующие максимальный биологический потенциал изучаемых сортов (таблица 5).
В результате комплексных исследований было установлено, что гарантированно высокое сохранение качества (достаточно высокая твердость, высокая дегустационная оценка, отсутствие загара) плодов сорта Мартовское (и других сортов с высокой восприимчивостью к загару) в течении 4-5 месяцев обеспечивалось при хранении в условиях ОА+МЦП, хранение в условиях регулируемой атмосферы, даже в сочетании с послеуборочной обработкой 1-МЦП связано с определенными рисками (варианты 2-РА+МЦП и 3-РА+МЦП), которые могут быть оправданы лишь при постоянном мониторинге состояния продукции. Хранение в условиях 1-РА+МЦП – не целесообразно из-за высоких рисков поражения плодов загаром.
Таблица 5. Рекомендуемые сроки хранения плодов, месяцы.
Условия хранения |
Мартовское |
Северный Синап |
контроль |
+1-МЦП |
контроль |
+1-МЦП |
ОА
(О2 -21%, СО2 -0,03%; С2Н4 –5-14,5 ppm) |
1,5-2,0 |
5-6 |
4 |
6-7 |
1-РА
(О2 — 16-18%, СО2 -3-4%; С2Н4 – 38-78 ppm) |
не рекомендуется |
не рекомендуется |
не рекомендуется |
5-6* |
2-РА
(СО2 -1,2%; О2 -1,2%, С2Н4 – 10-40 ppm) |
не рекомендуется |
7-8 |
не рекомендуется |
8-9 |
3-РА
(СО2 -1,2%; О2 -1,2%, С2Н4 – 45-133 ppm) |
не рекомендуется |
4 |
не рекомендуется |
5-7 |
* — велики риски поражения плодов загаром.
Максимально высокое сохранение качества плодов сорта Северный синап в течение 5-9 месяцев хранения (высокая твердость, отсутствие загара) обеспечивалось при хранении в условиях 2-РА и 3-РА в сочетании с послеуборочной обработкой 1-МЦП, далее — ОА+МЦП и 1-РА+МЦП.
Из-за высоких рисков поражения загаром хранение необработанных плодов сорта Мартовское (и других сортов с высокой восприимчивостью к загару) более двух месяцев в условиях ОА и, особенно, в РА – не целесообразно. Возможно хранение необработанных плодов сорта Северный Синап (и других сортов с не высокой восприимчивостью к загару) в условиях ОА и РА до 4 месяцев при постоянном мониторинге состояния продукции, при увеличении сроков хранения риски побурения кожицы возрастают.
Из-за определенного увеличения стоимости продукции в условиях регулируемой атмосферы ее хранение менее 3-4 месяцев малорентабельно, следовательно, хранить в условиях РА плоды, необработанные ингибитором биосинтеза этилена не целесообразно (Таблица 5).
ВЫВОДЫ
1. Восприимчивость плодов к загару определяется генотипом сорта, комплексом экологических и агротехнических факторов выращивания, сроков съема, оказывающих влияние на минеральный, гормональный и антиоксидантный статус плода, факторов и сроков хранения, их сочетания.
2. Устойчивость плодов к загару зависит от уровня накопления в кутикуле кожицы плодов триенов (КТ281), содержания антиоксидантов, соотношения антиоксиданты/КТ281. Чем выше интенсивность, уровень и чем раньше сроки накопления КТ281, тем больше вероятность раннего проявления загара, чем выше индексы СФС/КТ281 и рутин/ КТ281, тем устойчивее плоды к заболеванию. Важными составляющими для мониторинга развития загара могут быть данные по содержанию эндогенного и экзогенного этилена, темпам и уровню накопления α-фарнезена в кожице плодов.
3. Биосинтез непредельного углеводорода α-фарнезена, коньюгированных триенов, антиоксидантов в значительной мере зависит от содержания кислорода, эндогенного этилена в плодах и экзогенного – в камере хранения.
4. Подтверждена двойственная роль этилена в развитии загара. С одной стороны он стимулирует биосинтез α-фарнезена, предшественника триенов, вызывающих развитие загара, с другой – стимулирует синтез антиоксидантов, сдерживающих его развитие. Потери от загара зависят от соотношения антиоксиданты/КТ281.
4. Кислороду принадлежит ведущая роль в ингибировании накопления α-фарнезена и особенно в процессах его окисления в коньюгированные триены. Поддержание минимально допустимых для каждого сорта концентраций О2 (не вызывающих низко-кислородных повреждений плодов) позволит в максимальной степени ингибировать/контролировать развития загара.
5. Экзогенный и эндогенный этилен, очевидно, стимулируют процессы, инициирующие синтез α-фарнезена. Постоянное поддержание низкого уровня этилена (<5ppm) в камере с РА и внутри плода эффективно сдерживает биосинтез α-фарнезена и продуктов его окисления и обеспечивает защиту плодов многих сортов от загара.
6. Обработка плодов 1-МЦП при всех рассмотренных технологиях хранения ингибирует биосинтез этилена, α-фарнезена и продуктов окисления, сдерживает развитие загара. В наибольшей мере плоды сортов Мартовское и Северный Синап поражались загаром в условиях повышенного уровня О2, высокого эндогенного и экзогенного этилена (1-РА, МА), в наименьшей – при ультранизком содержании О2, умеренном содержании эндогенного и экзогенного этилена в сочетании с обработкой 1-МЦП (2-РА+МЦП).
7. При хранении необходимо тщательно контролировать состав атмосферы в камере – содержание О2, СО2, С2Н4, так как при отклонении от рекомендуемых параметров возможны внутренние и внешние повреждения плодов.
8. Установлено прямое влияние уровня содержания эндогенного этилена и твердости на товарное качество плодов (вкус, свежесть, консистенция мякоти и др). Условия хранения: низкий уровень содержания кислорода, повышенный – углекислого газа, низкий уровень экзогенного этилена, послеуборочная обработка плодов 1-МЦП способствуют сохранению исходного качества плодов (2-РА+МЦП).
9. Определены сроки хранения контрольных и обработанных 1-МЦП партий плодов, реализующие максимальный биологический потенциал сортов Мартовское, Северный Синап в условиях ОА, 2-РА, 3-РА. Использование 1-РА для хранения плодов изучаемых сортов не рекомендуется.
10. Не рекомендуется хранить в одной камере плоды нескольких сортов, имеющих различный уровень биосинтеза этилена и даже одного сорта, но с различной степенью зрелости.
11. Каждая технология хранения плодов имеет свои преимущества и недостатки, поэтому необходимо сравнительными испытаниями установить для каких сортов и какого качества плодов, сроков хранения, наличия материально-технической базы, квалификации кадров и для каких сегментов рынка целесообразно их использовать. В одном хозяйстве могут эффективно использоваться несколько технологий.
12. Выявленные механизмы развития загара позволяют вести поиск новых технологических возможностей защиты плодов от заболевания.
Многолетними исследованиями и производственной проверкой установлено, что максимальная эффективность разработанных технологий хранения плодов достигается при использовании продукции высокого качества, для гарантированного сохранения которой необходимо все элементы: производство, уборка, хранение, товарная обработка и доведение продукции до потребителя — объединить в единую управляемую технологическую систему.
Список литературы.
1. Гудковский В.А. Причины повреждения плодов загаром и система мер борьбы с этим заболеванием / В.А. Гудковский // Повышение эффективности садоводства в современных условиях Т.3: Материалы Всероссийской научно практической конференции. МичГАУ, 2003 – С.207-216.
2. Гудковский В.А. Основные итоги исследований по разработке и освоению инновационных технологий хранения плодов / В.А. Гудковский, Л.В. Кожина, А.Е. Балакирев, Ю.Б. Назаров // Инновационные основы развития садоводства России: Труды Всероссийского научно-исследовательского института садоводства имени И.В. Мичурина. – Воронеж: Кварта, 2011. – С. 268-291.
3. Гудковский В.А. Современные и новейшие технологии хранения плодов (физиологические основы, преимущества и недостатки) / В.А. Гудковский, Л.В. Кожина, А.Е. Балакирев // Труды Всероссийского научно-исследовательского института садоводства им. И.В. Мичурина. Научные основы садоводства: Сб. науч. Трудов. – Воронеж.: Кварта, 2005. — С.309-325.
4. Гудковский В.А. Научно-практические основы совершенствования технологий хранения плодов, ягод и овощей в обычной, регулируемой и модифицированной атмосфере с использованием отечественного ингибитора биосинтеза этилена./В.А. Гудковский, Л.В. Кожина, А.А. Кладь, А.Е. Балакирев, Ю.Б. Назаров// Достижения, перспективы и направления развития садоводства и питомниководства в Российской Федерации: мат. науч.- практ. конф. Мичуринск-наукоград РФ, 2011.- С. 26-47.
5. Streif J. Haltbarkeit und Fruchtgualitat durch Fortschritte in der Lagertechnik verbessern: CA/ULO pur DCA pur oder mit MCP? Teil 1./ J. Streif, R. McCormick, D. Neuwald //. Besseres Obst, – 2008. — №8. – S. 9-11.
6. Streif J. Haltbarkeit und Fruchtgualitat durch Fortschritte in der Lagertechnik verbessern: ULO pur, mit DCA oder MCP? Teil 2. / J. Streif, R. McCormick, D. Neuwald // Besseres Obst. – 2008. — №9. – S. 10-12.
7. Geyer M., Praeger U. Lagerung gartenbaulicher Produkte // Kuratorium fur Technik und Bauwesen in der Landwirtschaft e.V. (KTBL), Darmstadt, 2012. – 296 p.
8. Zanella A (2003) Control of apple superficial scald and ripening — a comparison between 1-methylcyclopropene and diphenylamine postharvest treatments, initial low oxygen stress and ultra low oxygen storage. Postharvest Biol. Technol. 27: 69-78.
9. Rupasinghe HPV, Murr DP, Paliyath G, Skog L (2000) Inhibitory effect of 1-MCP on ripening and superficial scald development in ‘McIntosh’ and ‘Delicious’ apples. J. Hort. Sci. & Biotechnol 75: 271-276.
10. Watkins CB, Nock JF, Whitaker BD (2000) Responses of early, mid and late season apple cultivars to postharvest application of 1-methylcyclopropene (1-MCP) under air or controlled atmosphere storage conditions. Postharvest Biol Technol 19: 17-32.
11. Гудковский В.А. Роль минерального состава, гормонов и антиоксидантов в защите плодов и растений от физиологических заболеваний / В.А. Гудковский, Ю.Б. Назаров, Л.В. Кожина // Инновационные технологии производства, хранения и перепаботки плодов и ягод: Материалы науч.-практ. конф. 5-6 сентября 2009г, Мичуринск. 2009. С. 26-40.
12. Saure M.C.(2005). Calcium translocation to fleshy fruit: its mechanism and endogenous control. Sci.Hort.105:65-89.
13. Perring M.A., Jackson C.H.(1975). The mineral composition of apples. Calcium concentrations and bitter pit in relation to mean mass per apple. J. Sci. Food Agric .26:1493-1502.
14. Marschner H.(1995). Mineral Nutrition of Higher Plants, 2.Aufl.Academic Press, Amsterdam.
15. Ракитин В.Ю., Ракитин Л.Ю. Определение газообмена и содержания этилена, двуокиси углерода и кислорода в тканях растений / В.Ю. Ракитин, Л.Ю. Ракитин // Физиология растений. М.: Наука – Т.33.-выпуск 2. – 1986. – С. 403-413.
16. Морозова Н.П. Спектрофотометрическое определение содержания фарнезена и продуктов его окисления в растительном материале / Н.П. Морозова, Е.Г. Салькова // Биохимические методы. М.:Наука, 1980. с. 107-112.
17. Луковникова Р.А. Определение витаминов других биологически активных веществ./ Р.А. Луковникова, Н.П. Ярош.// Методы биохимического исследования растений. Под ред. А.И. Ермакова, Ленинград: ВО «Агропромиздат», 1987. С. 111-119.
18. Tromp J. Fundamentals of temperate zone tree fruit production/ J. Tromp, A.D. Webster and S.J. Wertheim // Backhuys Publishers, Leiden, 2005. – 400 p.
19. Ju Z, Bramlage WJ (1999) Phenolics and lipid-soluble antioxidants in fruit cuticle of apples and their antioxidant activities in model systems. Postharvest Biol Technol 16: 107-118
20. Ju Z. Cuticular phenolics and scald dewelopment in “Delicious” apples. / Z. Ju; W.J. Bramlage // J.Am.Soc.Hortic.Sc., 2000; Vol.125, N 4, — P.498-504.
21. Alwan TF, Watkins CB (1999) Intermittent warming effects on superficial scald development of ‘Cortland’, ‘Delicious’ and ‘Law Rome’ apple fruit. Postharvest Biol. Technol. 16: 203-212.
22. Wang Z, Dilley DR (2000) Initial low oxygen stress controls superficial scald of apples. Postharvest Biol. Technol. 18: 210-213.
23. Whitaker BD (2000) DPA treatment alters a-farnesene metabolism in peel of ‘Empire’ apples stored in air or 1.5% 02 atmospheres. Postharvest Biol. Technol. 18: 91-97
24. Blanpied C.D. A review of the biology of storage scald and the technology of its controll// Tree fruit post harvest Journal. 1990/ 1. P. 14-15
25. Watkins CB (2003) Principles and practices of postharvest handling and stress. In: Apples, Botany, Production and Uses. (Ferree DC, Warrington IJ, eds), CABI publishing, Wallingford, Oxon, UK: 585-614
26. Lau OL, Barden CL, Blankenship SM, Chen PM, Curry EA, DeEU JR, Lehman-Saleda L, Mitscham EJ, Prange RK, Watkins CB (1998) A North American cooperative survey of ‘Starkrimson Delicious’ apple responses to 0.7% 02 storage on superficial scald and other disorders. Postharvest Biol Technol 1 13: 19-26
27. Chervin C, Raynal J, Andre N, Bonneau A (2001) Combining controlled atmosphere storage and ethanol vapors to control superficial scald of apple. HortScience 36: 951-952.
28. Geyer M., Praeger U. Lagerung gartenbaulicher Produkte // Kuratorium fur Technik und Bauwesen in der Landwirtschaft e.V. (KTBL), Darmstadt, 2012. – 296 p.
29. Wang Z, Dilley DR (2001) Initial low oxygen stress (ILOS) controls scald of apples without using postharvest chemical treatments. Acta Hort 553: 261-266
30. Ju Z, Duan Y, Zu Z (2000) Mono, di- and tri-acylglycerols and phospholipids from plant oils inhibit scald development in ‘Delicious’ apples. Postharvest Biol Technol 19: 1-7
31. Lafer F. Die Fruchtgualitat erhalten durch dynamische CA – Lagerung./ F. Lafer// Besseres Obst. – 2008. — №9.-S. 17-20.
32. Zanella A., Cazanelli P., Panarese A., Coser M., Cecchinel, M. andRossi, O. Fluorescence response to low oxygen stress:Modern storage technologies compared to SmartFresh treatment of apple./ A. Zanella, P. Cazanelli, A. Panarese, M. Coser, M. Cecchinel and O. Rossi // Acta Hort.- 2005.-№ 682. –S. 1535 – 1542.
33. Zanella A. Control] of apple scald — a comparison between 1 -MCP and DP A postharvest treatments, ILOS and ULO storage, ActaHorticulturae 600, ISHS 2003, pp.271-275.
34. Zanella A., Gazanelly P., Rossi O. Dynamic controlled atmosphere storage by means of chlorophyll fluorescence response for firmness retention in apples// Proc. 1C on Ripening Regulation and Postharvest fruit quality. Acta Hort. 796. ISHS 2008, pp.77-82.
35. Schouten SP, Prange RK, Verschoor JA, Lammers TR, Oosterhaven J (1997) Improvement of quality of ‘Elstar’ apples by dynamic control of ULO conditions. CA’97, University of California, Davis, CA, USA.
36. Veltman RH, Verschoor JA, Ruijsch van Dugteren JH (2003) Dynamic control system (DCS) for apples (Malus domestica Borkh. cv ‘Elstar’): optimal quality through storage based on product response. Postharvest Biol Technol 27: 79-86.
37. Mattheis J, Buchanan DA, Fellman Ж (1998) Volatile compounds emitted by ‘Gala’ apples following dynamic atmosphere storage. J Amer Soc Hort Sci 123: 426-432
Ярмилка В., кандидат сельскохозяйственных наук
Современные способы хранения плодов, овощей, ягод и винограда
Конечной целью сельхозпроизводителей является не все возрастающие объемы производства продукции, а реализация ее по наиболее выгодной цене. В связи с этим, особое значение имеют вопросы по послеуборочной доработке плодов, овощей, их сортировка, упаковка, продление периода реализации — все это позволяет существенно повысить конкурентоспособность продукции и получить больший доход.
Проект аграрного маркетинга организовал и провел в последнее время целый ряд мероприятий, посвященных этим актуальным вопросам. Фермеры получили возможность встретиться, прослушать лекции, получить консультации и практические рекомендации по каждому из своих хозяйств, одного из лучших специалистов в области хранения плодоовощной продукции профессора Калифорнийского университета Мартина Мейсона, а также представителя итальянских компаний, производящих современное холодильное оборудование, Ю. Калина. Была организована и осуществлена учебная поездка в Молдову, где фермеры Львовской, Закарпатской, Черкасской, Полтавской, Одесской областей и Крыма ознакомились с новейшими холодильниками и технологиями хранения плодов, овощей и винограда. Этим же вопросам большое внимание уделялось на первой международной конференции "Овощи и фрукты Украины: рынок новых возможностей", проведенной при поддержке Проекта аграрного маркетинга и АПК-Информ.
Существует много способов хранения плодоовощной продукции, ягод и винограда.
Основные из них: сушка, замораживание и хранение в холодильниках.
На сегодняшний день существует несколько промышленных технологий сушения: конвективная, кондуктивная, сублимационная, высокочастотная, современная экологически чистая инфракрасная технология. Последняя заслуживает особого внимания, т.к. эта технология обезвоживания позволяет сохранить витамины и другие биологически активные вещества на 85-90% от исходного продукта. При последующем непродолжительном замачивании сушеный продукт восстанавливает все свои натуральные свойства: цвет, естественный аромат, форму, вкус, при этом не содержит консервантов, т.к. высокая плотность инфракрасного излучения уничтожает вредную микрофлору в продукте, благодаря чему он может сохраняться около года без специальной тары, в условиях, которые исключают образование конденсата. В герметичной таре данный сухопродукт может храниться до 2 лет без ощутимой потери своих свойств. В зависимости от исходного сырья объем сушеного продукта уменьшается в 3-4 раза, а масса в 5-9 раз, что является положительным фактором при необходимости складирования и транспортировки. Все эти факторы позволяют сделать вывод о том, что применение ИК-технологии позволяет производить сушеные продукты такого качества, которого нельзя достичь при других известных методах сушения.
Для пищевой промышленности, при производстве продуктов быстрого приготовления: супов, каш, кетчупов, майонезов, кондитерских изделий и др. наибольший интерес представляют сушеные: лук, петрушка, морковь, паприка, баклажаны, томаты, тыква, кабачки, ежевика, черная смородина — и это далеко не полный перечень.
Сейчас в Украине насчитывается не более полусотни производителей сушеных пищевых продуктов, это такие предприятия, как: Малинский консервный завод (Житомирская обл.), Ривненский овощесушильный консервный завод (г. Ривне), Сумской плодоовощной консервно-сушильный завод, ОАО " Недригайловский консервный завод", "Хмельницкплодоовощпром", заготовительно-перерабатывающее предприятие г. Ракитное Киевской обл., ассортимент выпускаемой ими продукции: овощи, сухофрукты, сушеные грибы, полученные в основном конвективным способом сушки. В настоящее время в Украине производителей высококачественной сушеной продукции, полученной с применением ИК-технологии, практически нет, поэтому тем предприятиям, которые внедрят это производство, будет обеспечен успех. А пока эту свободную нишу заполняют такие поставщики, как николаевская фирма "ЛК Трейдер Украина", импортируя сушеные лук, морковь из Узбекистана.
Производителей оборудования для сушки пищевых продуктов в Украине мало. Предлагаются в основном шкафы для конвективной сушки. Различные виды сушильного оборудования предлагают киевские фирмы "Кимо-Бизнес", "Тронка-Агротех", "Энергия-Инвест", харьковские: "Технолог АП", НПО "Росс", "Криокон" и др. Не является проблемой заказать сушилки любого типа и производительности у зарубежных фирм, но это оборудование существенно дороже. Стоимость его в зависимости от способа и производительности от десятков до сотен тысяч долларов США.
Конвекционный сушильный шкаф для фруктов и овощей
В этом плане заслуживает внимания оборудование для инфракрасной сушки, выпускаемое НПО "Феруза" (г. Санкт- Петербург), представительства которого есть в Москве, Кишиневе, Днепропетровске ("Клио-Трейд"), Киеве (ООО "Сайленс"). Это предприятие выпускает 3 модификации бытовых сушилок, которые могут использоваться в небольших фермерских хозяйствах: "Пичуга", "Восток" и "Восток-LUX", а также промышленные сушильные установки "Надежда", промышленный сушильный шкаф "Универсал", "Универсал-2", сушильная установка "Феруза-300".
В январе 2005 года по грантовой программе поддержки фермерских объединений Проекта аграрного маркетинга в Украине львовскому кооперативу "Агродвир" передано 4 установки для инфракрасной сушки "Феруза".
Существует и другой высококачественный способ сушки — вакуумная сублимационная, иначе ее называют лиофилизацией или возгонкой, это процесс перехода вещества из твердого состояния в газообразное без жидкой фазы. Данный способ позволяет сохранить до 95% питательных веществ, витаминов, ферментов, биологически активных веществ. Если сублимированные продукты залить водой, то они восстанавливаются в течение 2-3 минут. Весят они в несколько раз меньше, чем свежие, не требуют специальных условий хранения и при температуре не выше +39°С могут храниться 2-5 лет. Себестоимость сублимированного продукта может в 4 раза превышать аналогичную продукцию, высушенную конвективным способом.
Сублимационная сушка — технология затратная, она приобретает экономическую целесообразность при производстве дорогостоящей продукции, например, органических, экологически чистых ягод и фруктов. Раньше в пищевой промышленности ее использовали в основном для выполнения заказов военной, оборонной и космической отраслей, теперь она оказалась востребованной для приготовления продуктов премиум класса.
Сублимированные ягоды ежевики
По оценке специалистов датской компании Niro A/S, объем мирового производства сублимированных продуктов питания — около 70 тыс. тонн, из них 40 тыс. тонн овощи, 25 тыс. тонн мясо и рыбопродукты и 5 тыс. тонн фрукты и ягоды. Рост мирового рынка сублимированных продуктов составляет примерно 3,5% в год.
Крупнейшие производители сублимационного оборудования: Niro Atlas-Stord Denmark A/S (Дания), Leybold (Германия), Stokes (США), Edwards (Великобритания), Shanghai Tofflon Science and Technology Co., Ltd (Китай). В России сублимационные установки производят НПО "Вакууммаш" (г. Казань), фирмы "Шабетник и Компания", "Биохиммаш".
В настоящее время одним из наиболее распространенных способов хранения быстропортящихся плодов и овощей является технологический процесс быстрого замораживания. Основным требованием, предъявляемым к этому способу, является обеспечение условий, при которых мягкие ягоды, овощи и фрукты (земляника, ежевика, малина и др.) не мнутся, сохраняется их целостный вид, исключается возможность смерзания отдельных ягод и кусочков плодов и получается сыпучий замороженный продукт, который удобно фасовать и перерабатывать. Технология, удовлетворяющая данным требованиям, реализуется в специальных скороморозильных аппаратах, использующих явление флюидизации ("сжижения"): слой из большого числа ягод или кусочков продукта, насыпанных на сетчатый конвейер, под воздействием интенсивного вертикального потока воздуха начинает вести себя как жидкость — происходит выравнивание толщины насыпанного слоя по поверхности конвейера, и частицы внутри слоя постепенно перемешиваются. В таком состоянии каждая ягода интенсивно и со всех сторон омывается потоком холодного воздуха, что обеспечивает ее быстрое замораживание, и из-за постоянного перемешивания не происходит смерзания соприкасающихся ягод и кусочков. Для замораживания используют сырье только высокого качества, отсортированное, помытое, без дефектных экземпляров. Некоторые виды сырья для инактивирования ферментов перед замораживанием бланшируют. Замораживание как способ хранения и консервирования основано на обезвоживании тканей плодов и овощей путем превращения содержащейся в них влаги в лед. Лед образуется при температуре от -2 до — 6°С, а в некоторых видах овощей от -1 до -3°С. Чем быстрее происходит процесс замораживания, тем больше образуется кристаллов, меньше их размеры, выше качество продукта. Плоды, ягоды, овощи замораживают при температуре -35-45°С, для хранения доводят температуру продукта до -18°С и далее хранят при этой температуре.
Внешний вид ягод после заморозки
Конструкции флюидизационных аппаратов, выпускаемых различными фирмами, наиболее известные из которых Frigoskandia (Швеция), Starfrost (Англия) и др., похожи и включают в себя следующие основные компоненты: теплоизолированный корпус, прямолинейные транспортные сетчатые контейнеры, охлаждающий воздух, теплообменник, центробежные вентиляторы, систему управления. Все внутренние компоненты, включая воздухоохладитель, выполняются из высококачественной нержавеющей стали. Флюидизационные скороморозильные аппараты — это высокопроизводительные устройства, обеспечивающие замораживание больших объемов продукции от 600 кг/час до 20 т/час. Диапазон продуктов, замораживаемых в таких аппаратах, очень широк. Это различные ягоды (ежевика, земляника, малина, смородина), резаные плоды (яблоки, груши, персики, абрикосы, сливы, дыни), овощи (зеленый горошек, бобы, резаный лук, картофель, морковь, кукуруза), дикорастущие лесные ягоды.
Наши соседи в Молдове уделяют большое внимание развитию этого перспективного направления, уже работают предприятия, промышленно производящие замороженную плодоовощную продукцию, в Кэушень (на основе быстрозамораживающего тоннеля с производительностью 2 т/час), Купчине (тоннель 1,5 т/час), в Слободзее (тоннель 1 т/час).
В этом году началось производство быстрозамороженных продуктов в Сороки на консервном заводе "Альфа Нистру" (тоннель с производительностью 3,5 т/час).
С развитием сети супермаркетов и наличия специальных витрин и торгового оборудования, предназначенного для реализации быстрозамороженных плодоовощных продуктов, этот вид продукции будет востребован у нас в стране.
Таблица 1
Период хранения фруктов и овощей в зависимости от температуры и влажности
Наименование |
Температура, °С |
Влажность, % |
Период хранения |
Яблоки |
-1+4 |
90-95 |
1-8 месяцев |
Баклажаны |
8-12 |
90-95 |
1-2 недели |
Брокколи |
0-1 |
95-100 |
1-2 недели |
Вишня |
-1+2 |
90-95 |
3-7 дней |
Земляника |
0 |
90-95 |
5-7 дней |
Капуста |
0-1 |
95-100 |
3-7месяцев |
Морковь |
0-1 |
95-100 |
4-8 месяцев |
Цветная капуста |
0-1 |
95-100 |
2-4 недели |
Сельдерей |
0-1 |
95-100 |
1-3 месяца |
Слива |
-1+2 |
90-95 |
1- 8 недель |
Смородина |
-0,5 -0 |
90-95 |
7-28 дней |
Огурцы |
8-11 |
90-95 |
1-2 недели |
Чеснок |
0 |
70 |
6-8 месяцев |
Виноград |
-1-0 |
90-95 |
4-6 месяцев |
Дыни |
4-15 |
85-90 |
1-3 недели |
Лук |
-1-0 |
70-80 |
6-8 месяцев |
Груши |
-1+3 |
90-95 |
1-6 месяцев |
Картофель (молодой) |
4-5 |
90-95 |
3-8 недель |
Картофель |
4-5 |
90-95 |
4-8 месяцев |
Малина |
-0,5 -0 |
90-95 |
2-3 дня |
Перец |
7-10 |
90-95 |
1-3 недели |
Персик |
-1+2 |
90 |
2-6 недель |
Черешня |
-1+2 |
90-95 |
2-3 недели |
Наиболее распространенным способом хранения плодов и овощей является хранение в холодильниках. Длительность хранения определяется целым рядом факторов, начиная от влияния почвенно-климатических условий возделывания культур, сортовых особенностей, рационального использования удобрений, агротехники, орошения, системы защиты от вредителей, болезней и сорняков, сроков и способов уборки, товарной обработки и, конечно же, способов и условий хранения. Плоды и овощи, предназначенные для длительного хранения, должны быть здоровыми и не иметь механических повреждений. Холодильник — это не госпиталь, и нельзя надеяться на то, что больные поврежденные плоды будут долго храниться.
Все биохимические процессы во фруктах и овощах зависят от температуры. При высокой температуре происходит ускоренный обмен веществ, потеря влаги, витаминов, органических веществ. Зависимость обмена веществ от температуры обозначается числом Wan Hoff. Например, для моркови и капусты это число находится между 2 и 3, т.е. при повышении температуры на 10°С интенсивность дыхания удваивается или утраивается.
Проще говоря, овощи начинают быстрее "стареть" и приходить в негодность. Поэтому крайне важно как можно быстрее охладить продукцию, предназначенную для закладки на длительное хранение.
После уборки плодов и помещения их в холодильник самыми важными процессами, обеспечивающими длительное хранение, являются процессы дыхания и транспирации. Поэтому для оптимального хранения плодов и овощей необходимо создание и поддержание оптимального температурно-влажностного режима, оптимальной концентрации кислорода и углекислого газа, удаление этилена. Оптимальные параметры температуры и влажности для обычных холодильников для основных видов культур приведены в табл. 1.
Чтобы существенно уменьшить естественную убыль веса плодоовощной продукции и максимально продлить срок хранения, необходимо как можно быстрее охладить продукцию после сбора урожая и поддерживать оптимальные параметры хранения.
Это достигается в холодильниках с регулируемой газовой средой (СА — контролируемая атмосфера, ULO — Ultra Low Oxygen, что означает ультра низкое содержание кислорода).
Низкое содержание кислорода позволяет резко снизить интенсивность дыхания плодов, что способствует более длительному и качественному их хранению. Для различных культур и сортов минимально допустимая концентрация кислорода может быть определена методом его снижения до момента образования этанола. Если процесс образования этанола будет определен в самой ранней стадии, то его можно остановить при помощи повышения концентрации кислорода на десятые доли процента, таким образом определяется минимально допустимая концентрация кислорода для данного сорта. Основным условием поддержания оптимально низкой концентрации кислорода является герметически закрывающаяся камера. Другим важным компонентом атмосферы, влияющим на хранение плодоовощной продукции, является углекислый газ, который выделяется плодами в результате дыхания и в повышенных концентрациях тормозит этот процесс. Если поместить фрукты или овощи в герметическое помещение, то концентрация в атмосфере кислорода (21%) будет в процессе дыхания снижаться, а углекислого газа возрастать. Очень высокая концентрация СО2 приводит к гибели продукции в результате превращения сахаров в этанол. Для большинства фруктов и овощей оптимальная концентрация углекислого газа составляет от 0,5% до 5%. Избыточное содержание СО2 в камерах холодильников с регулируемой газовой средой удаляется с помощью углекислотных адсорберов. Быстрое достижение оптимальной концентрации кислорода достигается при помощи продувки камер азотом. В настоящее время разработаны эффективные способы создания и поддержания концентрации регулируемой атмосферы при помощи автоматической компьютерной газоаналитической системы управления, с работой которой имели возможность ознакомиться фермеры-участники учебной поездки в Молдову по послеуборочной доработке и хранению плодоовощной продукции, организованной Проектом аграрного маркетинга в Украине. Одно из самых современных предприятий, которое посетила делегация, было OOO "BASFRUCT", основанное в 2003 году, расположенное в с. Романешть Страшенского района. Основное направление деятельности — производство, хранение, упаковка, реализация яблок и столового винограда. Учредители компании АО "BASVINEX" — крупнейший производитель и экспортер молдавской винной продукции на рынке России и республиканский Союз ассоциаций сельскохозяйственных производителей Молдовы, включающий в себя 1800 производителей с/х продукции и свыше 500 тыс. собственников земли. В сентябре 2003 г. OOO "BASFRUCT" с финансовой помощью Агентства США по международному развитию (USAID) при содействии CNFA приступило к строительству и в августе 2004 г. завершило и ввело в эксплуатацию холодильник с контролируемой газовой средой мощностью 2500 тонн. При холодильнике смонтирована современная линия сортировки яблок, которая позволяет автоматически сортировать плоды не только по размеру, но и по интенсивности окраски, а также позволяющая отбраковывать плоды, имеющие механические повреждения. Установлено также оборудование для производства тары из пятислойного картона, которая соответствует всем европейским требованиям.
В 2004 году предприятие было сертифицировано по системе контроля за качеством в соответствии с требованиями международных стандартов ISO-9001:2000 и НАССР. (Данный сертификат является необходимым условием для деятельности на международном рынке.) Стандарт, установленный по отношению к размеру яблок, составляет 140-175 г, или 70-85 мм в диаметре. Особенно высоким спросом пользуются сорта Mantuaner, Idared, Richaared Delicious, Colden Rezistent, Spartan, Mutsu, Ionagold, Gala, Ionafree, Braenburn, Topaz, Florina.
В 2004 году BASFRUCT заложил 50 га интенсивного яблоневого сада и 25 га виноградника, в основном сортом Молдова. Это позволит не закупать продукцию для закладки на длительное хранение, а иметь свою.
Оптимальные режимы хранения плодов и винограда в регулируемой газовой среде были разработаны в нашей стране еще в средине 80-х годов учеными Крымской опытной станции садоводства, Крымского сельскохозяйственного института, Института винограда и вина "Магарач", позволявшие сохранять при минимальных потерях яблоки, груши до марта, а виноград даже до первой декады мая. Эти работы не потеряли своей ценности и до настоящего времени. Сейчас проблема в достаточно высокой стоимости современных холодильников и современного оборудования.
Таблица 2
Состав газовой среды для хранения винограда
Сорт |
Состав среды (СО2, О2, остальное — азот) |
СО2, % |
О2, % |
Агадаи |
3 |
5 |
Тербаш |
3 |
3 |
Нимранг |
3 |
3 |
Асма |
8 |
5 |
Шабаш |
8 |
5 |
Ризага |
5-8 |
5 |
Мускат гамбургский |
5-8 |
3 |
Италия |
5-8 |
3-5 |
Молдова |
5-8 |
3-5 |
Кара изюм ашхабадский |
5-8 |
3-5 |
Карабурну |
3 |
2-3 |
Особенность хранения винограда, как в обычных условиях, так и в условиях регулируемой газовой среды заключается в периодической фумигации сернистым ангидридом (сульфурации) для подавления фитопатогенной микрофлоры. В среде с повышенной влажностью сернистый ангидрид образует агрессивную среду, которая выводит из строя оборудование. Поэтому камеры современных холодильников, предназначенные для хранения винограда, изготовляются из нержавеющей стали. Также необходимо дополнительное оборудование для удаления сернистого ангидрида из камеры после 20-30-минутной обработки.
Во время проведения первой международной конференции "Овощи и фрукты Украины: рынок новых возможностей" большой интерес вызвала информация компании "Степак" об особенностях перспективной технологии Xtend — сохранения свежих продуктов с использованием современной упаковки для хранения и транспортировки плодоовощной продукции. Xtend — технология, позволяющая сохранить овощи и фрукты в состоянии абсолютной свежести. Основа технологии — создание модифицированной атмосферы (МА) внутри полимерной упаковки (пакета) и поддержание ее до момента потребления хранящегося продукта. Запатентованный полимерный пакет позволяет благодаря тому, что поддерживает оптимальное соотношение углекислого газа, кислорода и влажности, сохранять продукцию в состоянии абсолютной свежести, при этом в упаковке отсутствует конденсат. Суть данной технологии в том, что овощи или фрукты должны быть охлаждены до температуры 1-6°С и упакованы в специальный пакет Xtend, который сохранит плод в состоянии абсолютной свежести в течение длительного времени. Затем коробки с продукцией укладываются на паллеты, и в рефрижераторах или в холодильной камере вагона при температуре 1-6°С товар доставляется без потерь до места назначения.
Сроки хранения плодоовощной продукции, упакованной по данной технологии: черешня — до 50-60 дней, земляника — 12-18 дней, огурец — 18-21 день, петрушка, укроп — 12-14 дней. По другим культурам данные предоставлены в табл. 3.
Xtend — технология, которая предусматривает создание специального упаковочного центра, необходимого для быстрого охлаждения и упаковки плодоовощной продукции. В зависимости от ассортимента и объема продукции упаковочные центры могут различаться по размеру площади, комплектацией оборудованием разной пропускной способности и разной технологией охлаждения (водяной или воздушной).
Хранение плодов черешни по Xtend технологии
Упаковочный центр необходим для переработки (упаковки по технологии Xtend) промышленных объемов от 40-60 тонн продукции в сутки и более. Крайне важно также расположение данного центра в непосредственной близости от места произрастания продукции, чтобы время после сбора урожая и началом его упаковки составляло не более 5-6 часов. Это связано с тем, что по истечении такого срока сохранить продукцию в состоянии абсолютной свежести уже не представляется возможным. Стандартный упаковочный центр разделен на несколько технологических участков, где огромное значение имеет охлаждение, являющееся началом холодовой цепи, работающей на длительное сохранение фруктов и овощей в состоянии абсолютной свежести. Очень важна качественная сортировка продукции перед упаковкой, в упаковочный пакет не должны попасть некачественные, поврежденные или загнившие плоды. Последним наиважнейшим условием является грамотная перевозка продукции от упаковочного центра до места реализации товара. Если эти условия не соблюдаются, можно потерять продукцию.
Таблица 3
Длительность хранения плодоовощной продукции при использовании Xtend-технологии
Наименование продукции |
Рекомендуемая температура хранения |
Время хранения, дней |
Лук зеленый (луковица и перо) |
0°С |
21-30 |
Цветная капуста |
0°С |
30 |
Редис |
0°С |
14-18 |
Кукуруза (неочищенные початки, 28-50 шт.) |
0°С |
18-28 |
Огурцы |
9-10°С |
18-21 |
Баклажан |
10-12°С |
18-21 |
Перец сладкий |
7-10°С |
18-21 |
Помидоры |
8-12°С |
18 |
Зелень (петрушка, укроп, мята) |
1-2°С |
12-14 |
Черешня |
-1-0°С |
30-60 |
Персики |
0-1°С |
30-35 |
Нектарин |
0-1°С |
30-35 |
Слива |
0-1°С |
30-35 |
Абрикос |
0-1°С |
25-30 |
Земляника |
0-1°С |
12-18 |
Ежевика |
0°С |
20-40 |
Виноград |
0-1°С |
30-40 |
Инжир |
-1-0°С |
20-40 |
Т.Г. Причко, Л.А. Хилько, М.Г. Германова
ГНУ СКЗНИИСиВ Росселъхозакадемии
УДК 664.8:634.1
В статье представлены результаты изучения качества ягод ремонтантных сортов малины, произрастающей в условиях юга России. Дана комплексная биохимическая и технологическая оценка ягод малины по товарным качествам, содержанию растворимых сухих веществ, сахаров, органических и аминокислот, витаминов, полифенолов. Выделены сорта для целенаправленного использования ягод малины при производстве варенья, компотов и продуктов заморозки.
Исследование химического состава ягод ремонтантных сортов малины, выращенной в условиях юга России
Малина — одна из ведущих ягодных культур, плоды которой обладают уникальными питательными и лечебными свойствами в свежем виде и в качестве продуктов переработки [6].
В настоящее время на юге России малина размещена в основном в индивидуальном секторе, и лишь отдельные хозяйства выращивают востребованные потребителями ягоды в производственных условиях (ЗАО «Виктория-92»).
Получить хороший урожай малины на Кубани крайне сложно из-за высоких летних температур и низкой относительной влажности воздуха. Другой причиной, сдерживающей закладку крупных плантаций малины, является значительная трудо-емкость выращивания.
Одним из направлений решения возникших в настоящее время проблем является использование ремонтантных сортов, способных формировать высокий урожай только на однолетних побегах осенью, когда спадает жара и растения получают достаточное количество влаги. В то же время по сравнению с сортами с двухлетним циклом плодоношения ремонтантные сорта малины позволяют продлить сезон потребления свежих ягод до августа — октября.
По данным И.В. Казакова, при выращивании ремонтантных сортов малины значительно упрощается весь агротехнический процесс ухода за плантацией, исключаются такие операции, как установка шпалеры, подвязка и укорачивание стеблей, а также сокращаются затраты по уходу за насаждениями. Возделывание ремонтантных сортов малины по типу однолетней культуры снимает проблему зимостойкости стеблей, а их удаление с плантации после скашивания позволяет избавиться от основных болезней и вредителей без применения пестицидов [2].
Поэтому в задачу наших исследований входило изучение качественных показателей ягод ремонтантных сортов малины, выращенной в условиях юга России.
Материалы и методы исследований
Объектами исследований служили ягоды ремонтантных сортов малины селекции ГНУ ВСТИСП Росселъхозакадемии, полученной из Кокинского опорного пункта: Бриллиантовая, Геракл, Калашник, Элегантная, Бабье лето и интродуцированного сорта Полана, завезенного из Польши.
Исследование товарных качеств ягод малины включало измерение размеров ягод (диаметр, высота) и массы. При изучении биохимического состава ягод определяли содержание растворимых сухих веществ по ГОСТ 28562; общих сахаров — по ГОСТ 8756.13; глюкозы и фруктозы — по ГОСТ Р51240; титруемых кислот — по ГОСТ 25555.0 [9]; витамина Р и антоцианов — колориметрическим методом в модификации Л.И. Вигорова [7]; витамина С — по А.Я. Трибунской; общие полифенолы — с реактивом Фолина-Дениса [4]. Содержание салициловой кислоты, свободных аминокислот определяли методом капиллярного электрофореза (система «Капель 103Р», НПФ Люмэкс, Россия) [5]. Производство консервной продукции осуществлялось по требованиям нормативной документации: варенья — по ГОСТ 53118-2008, компота — по ГОСТ 816-91, быстрозамороженных ягод — по ГОСТ 29187-91. Качество ягод после дефростации оценивали по «Методическими указаниями по проведению исследований с быстро замороженными плодами, ягодами и овощами» [3].
Результаты и обсуждения
Биологические и технологические особенности ремонтантных сортов малины в условиях юга России позволяют получать урожай от 7,5 т/га (Бабье лето) до 10,0 т/га.
рис.1. Ягоды ремонтантных сортов малины
В настоящее время на Кубани при посадке малины применяют современные интенсивные технологии с капельным орошением. Особое внимание к ремонтантным сортам малины обусловлено тем, что стоимость урожая, выращенного в осенний период превысила стоимость ягод, выращенных в начале лета по традиционной технологии, применяемой для сортов с обычным типом плодоношения. По результатам этого года средняя цена реализации малины ремонтантных сортов в осенний период составила 150 руб./кг.
Ягоды изучаемых ремонтантных сортов малины, произрастающей на юге России, различаются по величине, массе, форме, окраске, плотности сцепления костянок (рис. 1)
По крупноплодности выделены сорта Геракл, Бриллиантовая, Полана, Калашник (табл. 1).
Таблица 1
Технические показатели качества ягод ремонтантных сортов малины
Сорт |
Масса ягод, г |
Высота ягод, мм |
Диаметр ягод, мм |
Бабье лето |
2,2 |
16,2 |
19,2 |
Калашник |
2,8 |
17,9 |
19,5 |
Бриллиантовая |
з,з |
20,1 |
18,7 |
Полана |
2,8 |
20,6 |
18,6 |
Элегантная |
2,0 |
15,3 |
17,9 |
Геракл |
3,5 |
20,0 |
19,2 |
Вкусовые и технологические качества ягод малины во многом определяются их химическим составом. Растворимые сухие вещества ягод малины изучаемых сортов варьируют от 8,9 до 13,3 % (табл. 2).
Таблица 2
Биохимические показатели качества ягод ремонтантных сортов малины
Сорт |
Биохимические показатели |
раств. сухие вещества, % |
сумма сахаров, % |
общая кислотность, % |
с/к индекс |
витамин С, мг/100г |
витамин Р, мг/100г |
антоцианы, мг/100 г |
Бабье лето |
10,4 |
8,2 |
1,33 |
6,1 |
28,0 |
39,0 |
77,8 |
Геракл |
10,8 |
8,5 |
1,72 |
4,9 |
16,3 |
21,6 |
109,1 |
Калашник |
9,9 |
7,8 |
1,74 |
4,5 |
22,2 |
22,5 |
92,8 |
Элегантная |
8,9 |
7,1 |
1,56 |
4,5 |
21,1 |
10,0 |
37,5 |
Бриллиантовая |
10,6 |
8,4 |
1,34 |
6,3 |
31,9 |
13,0 |
174,0 |
Полана |
13,3 |
10,3 |
1,38 |
7,5 |
26,4 |
15,4 |
118,2 |
Максимальным накоплением растворимых сухих веществ отличаются сорта Полана, Геракл, Бриллиантовая, Бабье лето. Аналогичные тенденции наблюдаются и в уровне содержания сахаров, которые почти в равном соотношении представлены в основном глюкозой и фруктозой, и в незначительном количестве — сахарозой (рис. 2).
Рис. 2. Фракционный состав сахаров ягод малины, обусловленный сортовыми особенностями
Важным компонентом, обуславливающим вкусовые качества ягод малины, являются органические кислоты, представленные на 85-90 % яблочной и незначительным количеством лимонной и янтарной кислотами [6]. Общая кислотность исследуемых сортов ягод малины в пределах 1,31 — 1,74 %, при максимальном накоплении у сортов Калашник (1,74 %) и Геракл (1,72 %).
Одним из основных качественных показателей ягод является их вкус, который обуславливается соотношением сахаров и органических кислот. Ягоды малины преимущественно обладают кисло-сладким вкусом, при этом сахаро-кислотный индекс составляет 4,5-7,5 относительных единиц в зависимости от сортовых особенностей.
Лечебные и профилактические свойства ягод малины связаны с содержанием витамина С, уровень накопления которого в условиях Кубани ниже в 1,5-2 раза по сравнению с центральной частью России и варьирует от 16,3 до 31,9 мг/100 г в зависимости от сортовых особенностей [1].
Содержание витамина Р, являющегося частью полифенольного состава ягод, изменяется в пределах от 10,0 до 39,0 мг/100г (рис. 3).
Рис. 3. Содержание витаминов в ягодах ремонтантных сортов малины
Суммарное количество полифенольных веществ варьирует от 238,2 мг/100 г (сорт Полана) до 330,1 мг/100 г (сорт Калашник).
Окраска ягод малины в значительной степени определяется состоянием зрелости, а также биологически обусловленными особенностями сортов, которые связаны с наличием антоцианов, уровень содержания которых отличается в 3-4 раза. По интенсивности окраски выделены ремонтантные сорта малины Бриллиантовая, Полана, Геракл.
На примере ягод сорта Бриллиантовая идентифицированы и другие фенольные соединения: хлорогеновая, никотиновая, оротовая, кофейная, салициловая, протокатехиновая кислоты и ресвератрол, с содержанием которых связана биологическая ценность ягод малины (рис. 4).
Рис.4. Фенольные соединения ягод малины сорта Бриллиантовая
В ягодах ремонтантных сортов малины обнаружено от 9,3 мг/100 г (сорт Полана) до 1,9 мг/100 г (сорт Бриллиантовая) салициловой кислоты, обладающей бактерицидными свойствами.
Изучалось содержание свободных аминокислот в ягодах малины на примере ремонтантных сортов Бабье лето и Полана. Наибольшее количество (61,8 мг/100 г) обнаружено в ягодах малины сорта Полана, что обуславливает их лечебную ценность (табл. 3).
Таблица 3
Содержание свободных аминокислот в ягодах ремонтантных сортов малины Бабье лето и Полана
Наименование |
Сорт/содержание аминокислот, мг/100 г |
Бабье лето |
Полана |
Незаменимые |
Валин |
4Д7 |
1,28 |
Лизин |
0,19 |
0,12 |
Лейцин |
0,27 |
0,46 |
Метионин |
1,36 |
2,98 |
Треонин |
3,87 |
8,57 |
Фенилаланин |
0,53 |
не обн. |
Заменимые |
Аланин |
2,74 |
30,16 |
Аргинин |
1,75 |
9,89 |
Гистидин |
0,68 |
не обн. |
Глицин |
0,14 |
0,28 |
Серин |
0,78 |
5,63 |
Пролин |
1,77 |
2,41 |
ИТОГО |
18,25 |
61,80 |
Физиология
Исследование ягод малины ремонтантных сортов в переработке при производстве варенья, компотов и продуктов быстрого замораживания позволили выделить сорта, обеспечивающие получение высококачественной готовой продукции. Сорта Бабье лето, Калашник, Полана, Геракл, с плотной ягодой кисло-сладкого вкуса и интенсивной окраской универсальны.
Полученные образцы варенья и компота из ягод данных сортов имеют выраженный аромат, яркий цвет сиропа, хорошо сохранившуюся форму ягод, что в совокупности определяет высокую дегустационную оценку 4,7-4,9 баллов.
Замороженная продукция из вышеперечисленных сортов малины после дефростации хорошо сохраняет форму, товарный вид, вкус и аромат, присущие свежим ягодам (рис. 5, 6).
Потеря сока ягодами при дефростации через 6 месяцев хранения составляет от 0,6 % сорт Полана) до 1,2 % (сорт Бабье лето). Сохранность витамина С при этом достигает 75-79 % от исходного, P-активных веществ — 90-98 %.
Выводы
- По крупноплодности выделены ремонтантные сорта малины Геракл, Бриллиантовая, Полана, Калашник, имеющие массу ягод 2,8-3,5 г.
- Высоким уровнем накопления биологически активных веществ отличаются сорта Бриллиантовая, Бабье лето, Полана, Калашник: содержание витамина С составляет 22,2-31,9 мг/100 г, P-активных веществ 10,0-39,0 мг/100г.
- Высококачественный готовый продукт при производстве варенья, компота и быстрой заморозке может быть получен при использовании ягод малины ремонтантных сортов Бабье лето, Калашник, Полана, Геракл.
Рис. 5. Свежие ягоды малины, (сорт Полана)
|
Рис. 6. Замороженные ягоды малины, (сорт Полана)
|
Литература
- Бохан И.А., Ротачев С.А. Оценка новых ремонтантных сортов малины по биохимическому составу ягод // Плодоводство и ягодоводство России: Сб. научн. работ / Т.Х1Х / ВСТИСП. — М., 2008. — С. 25-27.
- Казаков И.В., Евдокименко С.Н. Малина ремонтантная. — М.: ГНУ ВСТИСП, 2007. — 288 с.
- Методические указания по проведению исследований с быстрозамороженными плодами, ягодами и овощами. — М., 1989. — 25 с.
- Методические указания по химико-технологическому сортоиспытанию овощных, плодовых и ягодных культур для консервной промышленности / Редколлегия: В.Я. Бородовой и др. / ВНИИ консервной и овощесушильной промышленности. — М.: Россельхо- закадемия, 1993. — 107 с.
- Методическое и аналитическое обеспечение исследований по садоводству. — Краснодар, 2010. — 310 с.
- Причко Т.Г. и др. Особенности накопления биологически активных веществ в ягодах малины юга России // Плодоводство и ягодоводство России: Сб. науч. работ / Т.ХХ11. 4.2. / ВСТИСП. — М., 2009. — С. 367-376.
- Программа и методика сортоизучения плодовых, ягодных и орехоплодных культур / Редколлегия: Г.А. Лобанов и др. / ВНИИС им. Мичурина. — Мичуринск, 1973. -495 с.
- Программа и методика сортоизучения плодовых, ягодных и орехоплодных культур / Под ред. Е.Н. Седова. — Орел, 1999. — 606 с.
- Продукты переработки плодов и овощей. Методы анализа — М.: Изд-во стандартов, 2002. — 200 с.
Гудковский В.А.
академик РАСХН
|
Кладь А.А.,
Ген. директор ЗАО «Сад-Гигант», доктор с.-х. наук, профессор |
Комплексное освоение инновационных технологий производства, хранения и доведения плодов до потребителя – основа повышения эффективности садоводства
Садоводство – капиталоемкая отрасль, поэтому задача каждого производителя, используя инновационные технологии производства и хранения плодов, окупить в ближайшие годы капитальные затраты и получать стабильную прибыль.
Продуктивность насаждений и качество плодов основа эффективного садоводства
Садоводство следует рассматривать как единую, биологическую (живую) систему управления продуктивностью насаждений и качеством плодов на всех этапах их жизни.
Единая система управления продуктивностью насаждений и качеством плодов — основа повышения эффективности садоводства
Основой системы управления продуктивностью насаждений и качеством плодов являются современные знания закономерностей физиологических процессов растения и плода на всех этапах их жизнедеятельности.
индукция |
инициация |
дифференциация |
покой |
Цветение и завязывание плодов |
июнь |
июль |
август |
сентябрь |
октябрь |
ноябрь |
декабрь |
январь |
февраль |
март |
апрель |
май |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
|
Рост плодов |
Съём плодов |
Хранение, товарная обработка и реализация плодов |
июнь |
июль |
август |
сентябрь |
октябрь |
ноябрь |
декабрь |
январь |
февраль |
март |
апрель |
май |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
|
Физиологические и технологические основы стабилизации продуктивности насаждений
Наибольший эффект этой системы достигается в садах интенсивного типа
Интенсивный сад ЗАО «Сад-Гигант»
Сад интенсивного типа «Сады Баксана» (КБР)
Урожайность 40 и более тонн
Комплекс экологических, биологических, агротехнических факторов, регулирующих сбалансированный рост, продуктивность, устойчивость к стресс-факторам плодовых насаждений, качество, лежкоспособность плодов и предотвращающих периодичность плодоношения (концептуальная модель эффективного производства высококачественных плодов)
Основополагающими физиологическими процессами в жизни плодовых растений являются:
- закладка и формирование цветковых почек (индукция, инициация, дифференциация),
- цветение,
- опыление,
- оплодотворение,
- завязывание плодов, их рост и развитие.
Исключительная роль в этих процессах отводится гормональному балансу растений (соотношение гиббереллинов, ауксина, этилена)
При избыточном содержании гиббереллинов и ауксинов процесс закладки цветковых почек сдерживается
Физиологическая модель ингибирования закладки цветковых почек
Важным условием стабилизации плодоношения является регулирование нагрузки урожаем, задача которой заключается в удалении лишних центров синтеза этих гормонов (цветки и развивающиеся плоды).
Регулирование нагрузки урожаем — удаление избыточных центров синтеза гиббереллинов и ауксинов (цветки и развивающиеся плоды).
Существует три метода регулирования урожайности:
- Ручной;
- Химический;
- Механический.
Регулирование ростовых процессов
Сильный рост побегов активизирует биосинтез гиббереллинов, ауксинов и ингибирует закладку цветочных почек, снижает проникновение света, фотосинтетическую способность листьев, создает конкуренцию за поглощение ассимилятов и минеральных веществ, особенно кальция между вегетативной частью и плодами. В результате чего возникает риск опадения плодов в период раннего их развития, а оставшиеся плоды, как правило, имеют недостаточную окраску и обладают повышенной восприимчивостью к подкожной пятнистости, внутреннему побурению, загару и распаду.
Наиболее эффективными способами снижения ростовых процессов являются использование регулятора роста Прогексадион –Са (Регалис) и подрезка корней или их совместное применение.
Оптимальная нагрузка урожаем и умеренный рост деревьев (физиологическое равновесие) – основа стабильного плодоношения и высокого качества плодов.
Индукция образования цветочных почек
(КАЧЕСТВЕННЫЙ ФИЗИОЛОГИЧЕСКИЙ ПРОЦЕСС, ОТВЕЧАЮЩИХ ЗА ПЕРВОНАЧАЛЬНЫЙ ЭТАП ТРАНСФОРМАЦИИ ВЕГЕТАТИВНЫХ ПОЧЕК В ЦВЕТОЧНЫЕ)
Начало:
- 39 -53 дней (6-7 недель) после полного цветения (5. -15. июня)
- 10-12 листовых примордиев в меристеме побегов
Характерные признаки:
- Меристема расширяется
- активируются специальные гены
Условия закладки цветочной почки
Значительное снижение биосинтеза гиббереллинов и ауксинов
- постепенное снижение интенсивности роста — прерывание роста побегов на начальном этапе
- своевременное прореживание цветков и плодов
Активация FT генов; деактивация TFL1 генов
Высокая продуктивность фотосинтеза (синтез углеводов)
- 15-20 здоровых листьев на плод, для обеспечения оптимального питания
- достаточно света — формировка, обрезка
- средние температуры (16- макс. 22“ С)
Инициация закладки цветочной почки
(безвозвратный переход вегетативной почки в цветочную)
Начало:
- 12 недель после цветения (=конец июля) ~ климат; погодные условия,питание,сорт, подвой
- 18-20 листовых примордиев в меристеме побегов
Продолжительность:
фаза основной инициации 3- 4 недели
Характерные признаки:
Образование так называемого меристемного нароста
Предпосылки инициации цветочной почки
Приостановка роста побегов и корней
- Снижение биосинтезаа цитокининов и гиббериллинов
- Переход почек в летний покой
Достаточное снабжение углеводами
- Свет, температура, вода для питание продуктивного фотосинтеза
- 15-20 здоровых, листьев на плод
Дифференциация цветков
(формирование основных органов цветка)
Начало:
После завершения фазы инициации
Продолжительность:
Август — ноябрь, а также весна
Характеристика:
Значительное увеличение размера и веса почек
Условия для дифференциации цветочных почек
Достаточное производство углеводов
- Свет, температура и вода для фотосинтеза
- 30-40 здоровых листьев/плодов с достаточным питанием
- оптимальные сроки сбора урожая (сроки съема)
- отсутствие преждевременного опадания листьев (запасы)
Качество цветков
Показатели качества плодов.
Калибр, окраска, отсутствие поражений вредителями, болезнями, градом, сеткой, солнечным ожогом, биохимический состав (минеральный, антиоксидантный, гормональный), физиологическое состояние, вкус, сочность, твердость, свежесть, привлекательность, высокая лежкоспособность, транспортабельность и их сохранение при доведении до потребителя.
Физиологические и технологические основы управления качеством плодов
Влияние экологических, биологических, агротехнических условий выращивания, сроков съема и факторов хранения на поражаемость плодов яблони физиологическими заболеваниями.
Калибр
Калибр плодов
Факторы сдерживающие рост плодов
- низкое качество цветковой почки и цветка, затянутый рост побегов;
- сильный рост побегов;
- перегрузка деревьев урожаем;
- недостаточное количество листьев на плод (<25);
- низкий фотосинтетический потенциал листьев;
- низкая активность корневой системы в весенний период и недостаточное поступление цитокининов через ксилему;
- повреждение листьев вредителями, болезнями и физиологическими нарушениями (пожелтение, пятнистость);
- высокая химическая нагрузка средствами защиты растений;
- прохладная погода в период деления клеток;
- угнетенное состояние растений;
- нарушение водного (переувлажнение, дефицит влаги), минерального и воздушного режимов;
- недостаток ассимилятов по разным причинам;
- ранний съем плодов.
Факторы стимулирующие рост плодов
- высокое качество цветковой почки, цветка и розеточных листьев;
- своевременное прореживание плодов (не позднее, чем через 30 дней после полного цветения);
- ручное прореживание плодов после июньского опадения;
- использование активаторов роста корневой системы, обеспечивающей поступление воды, минеральных веществ и цитокининов;
- сдержанный рост побегов и своевременная остановка их роста;
- оптимальная освещенность кроны и температура воздуха в период деления клеток;
- Использование регуляторов роста в фазу деления клеток (цитокинины, гиббереллины);
- количество листьев (>25 на плод), высокое их качество и фотосинтетическая активность (без повреждений вредителями, болезнями и пожелтения);
- сбалансированный рост побегов (обрезка, формировка, подрезка корней, регуляторы роста, зеленые операции);
- качественная защита растений;
- использование антистрессантов совместно с СЗР;
- продление пребывания плодов на дереве – обработка ауксинами (обстормон, обстактин), препаратами кальция;
- поэтапный съем плодов;
- оптимизация водного, воздушного и питательного режимов;
- создание резерва запасных веществ осенью (N, B, Zn и др.);
- обработка цитокининами + GA4+7 (2550 мг/л) в период между полным цветением и опадением лепестков.
Окраска
Окраска плодов
Факторы сдерживающие развитие окраски
- сортовые особенности;
- сильный рост побегов;
- затененность кроны;
- высокая нагрузка урожаем;
- избыток азота;
- жаркая и сухая погода в летний и осенний периоды;
- недостаток углеводов, К, Mn, li, Ca;
- сильная зимняя обрезка;
- недостаточная площадь листьев, их повреждение болезнями и вредителями и низкая фотосинтетическая продуктивность;
- избыточный химический стресс растений от СЗР;
- нарушение водного, минерального и воздушного режима;
- ранний съем плодов
Факторы способствующие развитию окраски
- сдержанный рост побегов;
- своевременное прореживание плодов;
- равномерное распределение плодов в кроне;
- обеспечение равномерной освещенности кроны (обрезка, формировка, зеленые операции, регуляторы роста);
- сохранение качества листьев (обеспечение углеводами), а соотношение плод/лист 1/25;
- использование отражающих свет материалов в междурядьях сада (полиэтиленовые материалы);
- обработка Этрелом, Гидрелом;
- своевременное прекращение роста побегов;
- продление сроков пребывания плодов на дереве – обработка Обстормоном, Обстактином.
- ограничение азотных удобрений во второй половине вегетации;
- Обработка насаждений соединениями содержащими Р, Са, N (Senilihos) за 23 недели до уборки урожая;
- оптимизация водного, минерального и воздушного режимов;
- поэтапный съем плодов;
- охлаждение плодов в течение часа надкроновым или подкроновым поливом, за 2 недели до уборки;
- ультрафиолетовый и синефиолетовый свет в зоне произрастания (размещение садов в предгорных условиях);
- использование клонов с более интенсивной окраской.
Сетка плодов
Факторы усиливающие развитие сетки
- Сортовые особенности, имеющие более низкий уровень гиббереллинов GA4+7;
- появление мертвых клеток (трещин) в кожице плодов изза неравномерного роста наружных и внутренних тканей. Способствуют развитию сетки мороз, град, агрессивные пестициды (медь, цинк), клещи, насекомые;
- жаркое лето, высокие температуры;
- избыток азота в начале весны;
- использование агрессивных химических препаратов усиливающих химический стресс;
- Сильный рост плодов в самой активной стадии деления клеток, первой стадии после завязывания
- нестабильный рост плодов;
- обработка садов в ночной период;
- избыток влаги на плодах;
- поселение дрожжей (Aureobasidium pullutans, Rhodoholura pulutaus);
- угнетенное состояние деревьев.
Факторы сдерживающие развитие сетки
- сортовые особенности;
- обработка препаратами серы и бора в ранние сроки (3 обработки);
- обработка гиббереллином Регулекс (GA4+7 (4 раза – первая – конец опадения лепестков, последующие через 10 дней, доза 510 мл/л));
- сдержанный рост побегов;
- умеренный рост плодов в самой основной стадии деления клеток;
- обработка пестицидами утром, исключая ночную влагу;
- снижение химического стресса, исключение агрессивных веществ и применение антистрессантов (гумат калия и др.);
- оптимизация водного, минерального и воздушного режимов;
- подбор устойчивых сортов.
Основные повреждения плодов в саду
Сетка
|
СОЛНЕЧНЫЙ ОЖОГ
|
Стекловидность
|
Подкожная пятнистость
|
Чечевичная пятнистость
|
Градобоины
|
Градобоины
|
Плодожорка
|
Листовертка
|
Щитовка
|
Мухосед
|
Растрескивание плодов
|
Пилильщик
|
|
Механические повреждения
(уборка, транспортировка, товарная обработка)
Осыпаемость плодов
Роль этилена и ауксинов в опадении плодов
Эффективность сохранения качества плодов при хранении на объем 1 и 5 тыс. тонн
Повышение цены реализации на 1 кг.
На 1 тыс. тонн
|
На 5 тыс. тонн |
На 1 руб — 1млн. руб
На 2 руб — 2 млн. руб
На 3 руб — 3 млн. руб
На 5 руб — 5 млн. руб
На 7 руб — 7 млн. руб
На 10 руб — 10 млн. руб
На 15 руб — 15 млн. руб
|
На 1 руб — 5млн. руб
На 2 руб — 10 млн. руб
На 3 руб — 15 млн. руб
На 5 руб — 25 млн. руб
На 7 руб — 35 млн. руб
На 10 руб — 50 млн. руб
На 15 руб — 75 млн. руб.
|
Повышение качества плодов в саду и сохранение его на стадии хранения – Основа повышения эффективности предприятия. Это достигается путем разработки и освоения комплексной программы качества
Физиологическая модель предотвращения периодичности, стабилизации продуктивности насаждений, их устойчивости к неблагоприятным факторам среды, повышения качества плодов в саду и его сохранения при хранении и доведении до потребителя
Продолжение презинтаций будет выложе позднее
Гудковский В.А.
доктор сельскохозяйственных наук, академик РАСХН,
зав. отделом «Послеуборочных технологий» ГНУ ВНИИС им. И. В. Мичурина,
г. Мичуринск, Россия
Резюме. Стабильность плодоношения насаждений яблони, повышение качества плодов и их лежкоспособности достигается при обеспечении физиологического равновесия между ростовыми процессами и оптимальной нагрузкой урожаем.
Физиологические и технологические основы предотвращения периодичности плодоношения, стабилизации продуктивности насаждений и повышения качества и лежкоспособности плодов яблони
В связи с глобализацией экономики, вступления России в ВТО и усиливающейся конкуренции плодовой продукции на рынке, стабильность плодоношения плодовых культур и качество продукции является исключительно актуальными. В России наиболее распространенной плодовой культурой является яблоня.
К сожалению, во многих насаждениях яблони интенсивного типа, в т.ч. расположенных в благоприятных природно-климатических условиях, наблюдается ярко выраженная периодичность плодоношения, а значительная часть плодов по многим показателям (калибр, окраска, биохимический и минеральный состав, устойчивость к физиологическим заболеваниям и др.) не отвечает современным требованиям, что резко снижает эффективность конечного результата. Учитывая, что садоводство является капиталоемкой отраслью и затраты на закладку садов и строительство современных плодохранилищ очень велики, вопросы стабилизации продуктивности насаждений яблони и повышения качества плодов являются первостепенными.
В связи с этим, очень важно рассмотреть эти проблемы с учетом новых знаний в области физиологии плодовых культур и передового практического опыта, полученного в нашей стране и зарубежных странах.
Результаты фундаментальных и прикладных исследований полученные в последний период, выявили важную многофункциональную роль фитогормонов (ауксинов, гиббереллинов, цитокининов, этилена, абсцизовой кислоты) в жизнедеятельности плодовых растений и плодов, и их влияние на продуктивность (закладку цветочных почек), устойчивость насаждений к стресс-факторам, качество плодов и их лежкоспособность (3,4,5,7,8). Важную роль в этих процессах также играют регуляторы роста и отдельные агроприемы (8,13,14).
В связи с этим более подробно рассмотрим роль фитогормонов, регуляторов роста и отдельных агроприемов в жизни плодовых растений.
Фитогормоны – это система регуляции жизненного цикла растений – рост, развитие, плодоношение, реакция на стресс факторы, покой. С помощью фитогормонов реализуется взаимосвязь различных органов растений (3-5).
В связи с этим, важно обеспечить сбалансированность гормональной системы, так как ее разбалансировка нарушает обменные процессы, вызывает негативные реакции растений – сильный рост побегов, недостаточная закладка цветочных почек, периодичность плодоношения, преждевременное пожелтение, опадение листьев, конкуренция за поглощение ассимилятов и минеральных веществ, снижение качества и лежкоспособности плодов, их преждевременное созревание и опадение и др.
Оптимальные условия закладки цветочных почек
Установлено, что для преодоления периодичности плодоношения важнейшим условием является обеспечение ежегодной закладки цветочных почек.
Физиологический импульс, связанный с обменом веществ, отвечающий за трансформацию вегетативных почек в цветочные происходит через 4-6 недель после цветения и продолжается около 3 недель (8).
В регулировании образования цветочных почек центральная роль принадлежит гормональной среде в окружении почек — низкий уровень гиббереллинов, ауксинов и повышенный уровень этилена (рис.1).
Одним из доказательств ингибирующего влияния гиббереллинов и ауксинов на закладку цветочных почек является тот факт, что их максимальное содержание в экссудатах плодов через 4-6 недель после цветения, т.е. в период трансформации вегетативных почек в цветочные (11,13).
Для закладки цветочных почек и их полноценной дифференциации не менее важную роль играет обеспечение всех органов плодового дерева (цветки, плоды, листья, побеги, корни) ассимилятами. При недостаточной обеспеченности ассимилятами и из-за конкуренции за них указанных потребителей степень закладки цветочных почек резко снижается (рис. 2).
Поэтому важно обеспечить высокий уровень фотосинтетической деятельности листьев.
Учитывая, что основная часть ауксинов и гиббереллинов, ответственных за закладку цветочных почек, синтезируются в кончиках побегов, листьев и семенах, степень ростовых процессов и нагрузка урожаем имеют решающее значение для закладки урожая следующего года – стабилизации продуктивности и качества плодов (8,9).
Многолетними наблюдениями и исследованиями убедительно подтверждено, что для предотвращения периодичности плодоношения и повышения качества плодов необходимо сбалансировать ростовые процессы и нагрузку урожаем, т.е. достичь физиологического равновесия.
Установлено, что избыток плодов на дереве нарушает гормональный баланс (высокое содержание ауксинов и гиббереллинов) и оптимальное снабжение всех органов растений ассимилятами, что в конечном итоге отрицательно влияет не только на закладку будущего урожая, но и качество плодов – калибр, биохимический, минеральный состав, анатомическая структура, антиоксидантная активность, вкус, аромат, лежкоспособность плодов, устойчивость к подкожной пятнистости, стекловидности, внутреннему и внешнему побурению, разложению от водянистой сердцевины и преждевременного старения. Кроме того, при избытке плодов на дереве значительная их часть по калибру и окраске не отвечает требованиям высшего и первого сорта.
В связи с этим необходимо путем прореживания плодов своевременно обеспечить оптимальную нагрузку урожаем – 6-7 плодов на 1 см2 поперечного сечения штамба (8).
Низкий и очень низкий урожай. Обычно это наблюдается на следующий год после чрезмерной нагрузки.
Из-за малого количества плодов и семяпочек – основных источников синтеза гиббереллинов и ауксинов исключается их избыток, а высокий уровень обеспеченности ассимилятами (из-за отсутствия плодов) при сбалансированном росте, создают прекрасные условия для закладки цветочных почек, и на будущий год следует опять ожидать чрезмерный урожай.
В годы с низким урожаем плоды, как правило, обладают высокой восприимчивостью к подкожной пятнистости, внутреннему побурению, разложению плодов с водянистой сердцевиной, внешнему СО2-повреждению, загару и др. Это происходит из-за несбалансированного гормонального состава и конкуренции за питательные и минеральные вещества между плодами и сильнорастущими побегами. В этом случае плоды содержат низкий уровень кальция и антиоксидантов (1,2,4,5).
Сильный рост побегов (кончики побегов и листьев) способствует более интенсивному синтезу гиббереллинов, ауксинов, цитокининов, которые ингибируют закладку цветочных почек и активизируют перенос (притяжение) питательных и минеральных веществ к активным точкам роста (листья, побеги) в большей мере, чем к плодам.
В результате этого плоды недополучают достаточного количества питательных и минеральных веществ, особенно кальция, что отрицательно сказывается на биохимическом, минеральном составе, анатомической структуре, качестве и лежкоспособности плодов. При сильном росте снижается освещенность, из-за чего в недостаточной степени развивается окраска плодов и накопление природных антиоксидантов. В этом случае плоды в большей мере поражаются подкожной пятнистостью, внутренним побурением и разложением, внешним СО2-повреждением, загаром, и эти болезни не представляется возможным исключить, даже при использовании прогрессивных технологий хранения. Поэтому важно обеспечить сбалансированный рост деревьев комплексом биологических и агротехнических факторов, тем самым предотвратить периодичность плодоношения и повысить качество и лежкоспособность плодов.
Оптимальный урожай (сбалансированный рост деревьев, своевременное и качественное прореживание плодов) обеспечивает гормональный и минеральный балансы и оптимальное содержание и распределение ассимилятов в растении, высокую закладку и качественную дифференциацию цветочных почек. Качественное выполнение всех агромероприятий позволяет получать высококачественные и лежкоспособные плоды (калибр, окраска, биохимический и минеральный состав), которые устойчивы к подкожной пятнистости, загару, внешнему СО2-повреждению, внутреннему побурению и разложению.
Поэтому только сбалансированный рост и оптимальная нагрузка урожаем обеспечивает устойчивую продуктивность, ежегодную закладку цветочных почек, высокое качество плодов и их лежкоспособность.
Таким образом, чтобы получать стабильные урожаи высокого качества необходимо на основании современных знаний в области физиологии производить подбор оптимальных сорто-подвойных комбинаций, целенаправленно использовать агромероприятия, обеспечивающие сбалансированный рост деревьев, оптимальную нагрузку урожаем, высокое качество плодов и их лежкоспособность (рис. 3).
На основании вышеизложенного, для стабилизации плодоношения и повышения качества и лежкоспособности плодов, в первую очередь, важно обеспечить регулирование ростовых процессов и оптимизировать нагрузку урожаем. Наибольшая эффективность конечного результата достигается в насаждениях интенсивного типа с различными конструкциями кроны (Веретеновидная, Шпиндельбуш, Би-Баум, колоновидная).
Регулирование роста деревьев
Спокойный (сбалансированный) рос деревьев является одним из главных условий предотвращения периодичности, получения стабильного урожая и высокого качества плодов. Установлено, что прирост однолетних побегов не должен превышать 25 см (11).
Существует несколько методов регулирования роста деревьев.
1) Биологические
— Подвой, сорт, сорто-подвойные комбинации.
Подвой оказывает значительное влияние на гормональный баланс, силу рота побегов, продуктивность насаждений, качество плодов, устойчивость растений к бактериальному ожогу яблони и др. заболеваниям, зимостойкость.
Поэтому в каждом регионе целесообразно испытать подвои, обеспечивающие сбалансированность ростовых процессов. Биологические методы управления ростовыми процессами являются наименее затратными.
— Сорт
В условиях рыночной экономики и усиливающейся конкуренции качество плодов является исключительно важным показателем эффективности садоводства. Необходимо использовать сорта, плоды которых в максимальной мере отвечают требованиям рынка.
Важнейшими показателями высокоэффективного сорта являются: продуктивность, устойчивость к болезням, калибр плода, окраска, биохимический состав, вкус, устойчивость к физиологическим заболеваниям (загар, подкожная пятнистость, внутренние побурения и др.), низкая периодичность плодоношения и умеренный рост.
— Регуляторы роста. В настоящее время наиболее эффективным для снижения ростовых процессов является препарат Прогексадион-Са (13,14). Физиологические основы и эффективность использования препарата ПРОГЕКСАДИОН – СА (Регалис) для регулирования ростовых процессов повышения закладки цветочных почек, устойчивости насаждений и качества плодов:
- Ингибирует биосинтез активных форм гибберлинов и сдерживает рост побегов
- Способствует закладке плодовых почек
- Ускоряет срок вступления в плодоношение
- Снижает риск периодичности плодоношения
- Увеличивает завязывание плодов
- Снижает июньское осыпание завязи
- Замедляет старение
- Снижает затраты на зимнюю и летнюю обрезку
- Снижает расход инсектицидов и фунгицидов
- Улучшает освещенность кроны, циркуляцию воздуха
- Увеличивает размер плодов и улучшает их окраску
- Повышает биосинтез фенольных соединений в т.ч., таннинов, лигнинов, стильбенов
- Снижает поражение бактериальным ожогом, патогенными грибами (парша, мучнистая роса) и бактериями
- Повышает устойчивость к поражению тлей, медяницей, листоблошкой, клещами
- Повышает физиологическую устойчивость растений к окислительному стрессу
- Повышает лежкоспособность плодов — сдерживает развитие подкожной пятнистости, водянистой сердцевины, распад, загар и другие болезни.
2) Агротехнические методы регулирования ростовых процессов и механизмы их действия.
Формирование и обрезка деревьев. В первые 2-3 года жизни растений путем формирования и обрезки следует обеспечить необходимый объем кроны и ее конструкцию, обеспечивающих получение урожая на 2-3 год 15-20 т/га, а в последующем – 30-40 т/га. Физиологической основой проведения этих операций является, прежде всего обеспечение гормонального баланса растений путем управления и перевода обменных процессов с вегетативного (ростового) на генеративный (закладку цветочных почек, их качественную дифференциацию). Это позволяет восстановить и постоянно поддерживать равновесие между ростовыми процессами и ежегодной закладкой урожая высокого качества. Для этих целей применяют обломку травянистых побегов, весеннюю, летнюю, осеннюю и зимнюю обрезку. Желательно зимнюю обрезку проводить в минимальном объеме. Кроме того, квалифицированное выполнение этих операций позволит оптимизировать световой, энергетический, минеральный и антиоксидантный балансы в растениях, повысить их устойчивость к стресс-факторам, улучшить качество и лежкоспособность плодов.
При сильном росте побегов применяют подрезку корней или штамбов. Механизм действия – ограничение поступления в растение воды и питательных веществ.
Формирование деревьев
Задача формировки перевести побеги в горизонтальные или близко к горизонтальному положению, снять апикальное доминирование и оптимизировать гормональный баланс и равномерное распределение питательных веществ, и своевременное окончание ростовых процессов.
Необходимо формировать короткие побеги, не длиннее 25 см. На этих побегах формируются плоды высокого качества (11).
Виды обрезки
Июньская обрезка основное назначение – корректировка нагрузки урожаем путем удаления слишком нагруженных, свисающих и стареющих плодовых веток.
Летняя обрезка проводится для лучшего освещения кроны, плодов путем удаления преимущественно длинных побегов с незакрытой концевой почкой. Ее проводят после массового закрытия побегов концевыми почками (после остановки роста). В этом случае снижается конкуренция за кальций между побегами и плодами, улучшается окраска плодов, повышается синтез антиоксидантов и улучшается лежкоспособность плодов. После проведения летней обрезки сокращается объем обрезки в зимний период.
Обрезка в августе проводится после массового закрытия концевой почки на побегах. При этой обрезки удаляются или укорачиваются длинные еще растущие побеги и древесина, создающая тень, даже если она плодоносит. Эта обрезка наиболее эффективно успокаивает ростовые процессы и резко снижает или даже исключает зимнюю обрезку.
Обрезка после уборки урожая в этот период удаляется преимущественно ветви в верхней половине дерева, т. к. удаление их в зимний период вызывает сильный рост. В первую очередь удаляются многолетние изношенные плодовые ветви в направлении ряда, а также разросшиеся за пределы ряда. Целесообразно удалять и низкорасположенные скелетные ветви.
Обрезка после уборки урожая является очень эффективной для ослабления роста побегов и улучшения освещенности кроны.
Основа торможения роста – удаление ассимилянтов и резерва перед их перемещением в штамб и корни. Поэтому обрезка должна проводится перед наступлением листопада. На очень сильно растущих участках сада целесообразно дополнительно проводить подрезку корней.
Преимущества.
Эффективное снижение ростовых процессов, улучшение освещенности, относительно низкие затраты, возможность использования персонала, который был на уборке.
Подрезка корней. Механизм действия – ограничение поступления в растение воды и питательных веществ. Обрезка корней вызывает сильный стресс, поэтому она проводится в садах с сильным ростом и слабой закладкой цветочных почек.
Обычно ее проводят в феврале, марте, чтобы к периоду активного роста и цветения произошла частичная генерация (восстановление) корневой системы. Ее проводят с одной или двух сторон в зависимости от комплекса факторов – особенностей сорта, силы роста, типа почвы, наличия капельного орошения и др.
Иногда ее проводят и в июне после июньского опадения плодов в садах с низкой урожайностью и сильным ростом. Корневую обрезку более эффективно проводить с использованием регуляторов роста (Регалис).
Запилы штамбов. Механизм действия – ограничение поступления в растения воды и питательных веществ. Обычно проводится за неделю до цветения или после цветения в течение 7-10 дней. Этот прием трудоемкий и редко применяется в производстве.
Сбалансированный рост и оптимальная нагрузка урожаем способствует закладке цветочных почек, снижению осыпаемости плодов в июне, получению качественного и лежкоспособного урожая из-за исключения сильной конкуренции за углеводы, аминокислоты, минеральные вещества между плодами и вегетативной частью деревьев.
Регулирование урожайности
Основными задачами регулирования урожая является предотвращение периодичности плодоношения и улучшения качества плодов и их лежкоспособности.
Плодовые насаждения с обильным цветение необходимо своевременно и качественно прореживать, чтобы достичь, с одной стороны, высокого качества плодов, с другой, создать условия для закладки цветочных почек и стабильный урожай на следующий год.
Для получения качественных плодов и закладки цветочных почек урожая следующего года, необходимо обеспечить нагрузку каждого дерева из расчета 6-7 плодов на 1 см2 поперечного сечения штамба.
Существует несколько способов регулирования урожайности:
1) Ручное прореживание цветков оптимальный срок удаления лишних цветков, соцветий от красных почек до стадии бутонов. В зависимости от степени цветения удаляется от ½ до ¾ цветков. Для биологического садоводства это один из важных приемов регулирования урожайности.
Ручное прореживание плодов в первую очередь обеспечивает улучшение качества (внешнее, внутреннее) и снижение периодичности плодоношения. Ручное прореживание плодов повышает калибр, усиливает окраску, улучшает биохимический, минеральный состав, обеспечивает хорошую лежкоспособность, сокращает расходы на сортировку. При ручном прореживании удается обеспечить равномерное распределение плодов в кроне с расчетом 1 плод на 25 – 30 листьев.
При ручном прореживании в первую очередь удаляются плоды:
- поврежденные болезнями (парша, мучнистая роса, насекомыми) градом и ветром;
- плохо опыленные, нессиметричные
- мелкие, недоразвитые и затенненые
- с сильно свисающих ветвей
2) Химические способы прореживания:
Этефон, Этрел. Механизм действия – повышение содержания этилена в разделительной ткани плодоножки плода, что способствует активации образования разделительной ткани и опадения плодов. Кроме того, этилен тормозит рост растений, что способствует лучшему обеспечению ассимилятами и закладке цветочных почек и их дифференциацию. Дозировки и сроки использования зависят от сортовых особенностей, погодных условий, нагрузки урожаем.
Ауксины. Механизм действия окончательно не установлен. По гипотизе профессора Бангерта избыток ауксинов вызывает образование этилена, который, с одной стороны, активизирует разрушение разделительного слоя, а с другой тормозит ростовые процессы и способствует опадению плодов текущего года и закладке цветочных почек для урожая будущего года.
В нашей стране применяется Обстактин, Обстормон. Дозировки, сроки применения зависят от нагрузки урожаем, погодных условий и сортовых особенностей (яблоня).
Цитокинины. Механизм действия – торможение экспорта ауксина — индолил-3-уксусной кислоты из плодов и побегов, стимулирование биосинтеза этилена.
Тиосульфат аммония (АТС (Н8N2O3S2)). Механизм действия – обезвоживание органов цветка (тычинки и пестики), которые больше поглощают это соединение, чем листья и побеги. После применения АТС также повышается уровень этилена. Кроме того, обработка листьев АТС приводит к временному недостатку ассимилятов в молодых плодах, цветках, что усиливает образование разделительной ткани в плодоножках плодов и их осыпанию. Сроки применения – массовое цветение.
Применяют и другие соединения, механизм их действия и технологию использования можно найти в специальной литературе.
3) Механическое прореживание принцип действия – сбивание пластиковыми прутьями цветков и соцветий прежде всего на периферии дерева. Интенсивность прореживания определяется скоростью движения, числом оборотов шпинделя, количеством пластиковых прутьев.
Время проведения — от зеленых почек до стадии бутонов, более позднее прореживание приводит к повреждению плодов. для этого типа прореживания необходимо готовить насаждения, создавать плодовую стену. Лучшей конструкцией кроны для этого является Би–баум.
Прореживание плодов (обеспечение оптимальной нагрузки урожаем) должно проводиться в ранние сроки (период цветения), но не позже достижения диаметра плодов более 25 мм. В этом случае, при сбалансированном росте деревьев, достигается гормональный баланс и оптимальное обеспечение ассимилятами, минеральными веществами плодов, молодых побегов и листьев, процессов закладки цветочных почек и их дифференциацию.
Лишние плоды необходимо удалять даже в поздние сроки.
При обеспечении оптимальной нагрузки урожаем на каждом дереве и сбалансированного роста, достигается эффективное снижение ингибирующего действия гормонов (гиббереллины, ауксины) и равномерное снабжение всех органов дерева питательными веществами, а это обеспечивает закладку цветочных почек и их дифференциацию.
Использование фитогормонов и регуляторов роста для повышения продуктивности насаждений и качества плодов
Увеличение завязываемости плодов – обработка деревьев в период цветения препаратом Регалис. Расход препарата от 0,5 до 1,5 кг/га в зависимости от степени цветения. Механизм действия – ингибируется синтез этилена, снижаются ростовые процессы, в результате чего улучшается обеспечение органов цветка и завязи питательными веществами. Сроки обработки – массовое цветение.
Обработка препаратом аминоэтоксивинилглицин в период массового цветения. Механизм действия – ингибирование этилена.
Удержание завязи в период июньского опадения. Обработка пониженными концентрациями Обстактина. Механизм действия – повышение содержания ауксинов в разделительном слое плодоножки и ингибирование этилена.
Снижение осыпаемости плодов в предуборочный период:
- Обработка синтетическими ауксинами (Обстактин) в концентрации 300-400 мл/га за 12-15 дней до запланированного срока съема. Механизм действия – повышение ауксинов в разделительной ткани сдерживает процесс ее разрушения, ауксины являются антагонистами этилена.
- Обработка плодов ингибиторами этилена. Хорошие результаты достигаются на летних сортах. Механизм действия – ингибирование этилена в разделительном слое
Таким образом, обеспечение умеренного роста и оптимальной нагрузки урожаем садов, комплексом биологических и агротехнических факторов предотвращает периодичность плодоношения, повышает качество плодов, устойчивость ко многим физиологичнским заболеваниям и их лежкоспособность (рис. 3)
Для получения высокого качества плодов (калибр, окраска, биохимический, минеральный, антиоксидантный состав и др.) и повышения их лежкоспособности необходимо оптимизировать водный, питательный и световой режимы с учетом фазы роста и развития вегетативных органов дерева и плодов (рис. 4).
Важнейшее значение имеет эффективная система защиты растений и плодов от болезней и вредителей.
Для зашиты плодов от града используются градозашитные сетки, а от весенних заморозков устанавливаются специальные распылители воды. Иногда используются генераторы тепла или мощные устройства для перемешивания воздуха. Высокие затраты на выполнение указанного комплекса мероприятий могут окупится только при получения ежегодного урожая высокачественных плодов не менее 35 – 40 тонн\га.
Таким образом, растения и плод – единая живая система, поэтому только на основе современных знаний в области физиологии и биохимии представляется возможным путем целенаправленного использования комплекса экологических, биологических, агротехнических и технологических факторов управлять продуктивностью и качеством плодов на разных этапах жизни – производство, уборка, хранение, товарная обработка, доведение до потребителя (рис. 5).
Для этого нужны не только финансовые и материальные ресурсы, но и квалифицированные кадры, владеющие новыми знаниями в области физиологии и технологии плодовых растений.
Литература.
- Гудковский В.А. Физиологические основы поражения плодов яблони подкожной пятнистостью и другими заболеваниями и система мер их предупреждения / В.А. Гудковский // Научно-практические достижения и инновационные пути развития производства продукции садоводства для улучшения структуры питания и здоровбя человека: Мат. Науч.-практ. Конф. 8-10 сентября 2008 г. – Мичуринск: Изд-во Мичуринского госагроуниверситета, 2008. С.90-97.
- Гудковский В.А. Роль минерального состава, гормонов и антиоксидантов в защите плодов и растений от физиологических заболеваний / В.А. Гудковский, Ю.Б. Назаров, Л.В. Кожина // Инновационные технологии производства, хранения и переработки плодов и ягод: Мат. науч.-практ. конф. 5-6 сентября 2009 года в г. Мичуринске Тамбовской области, 2009 – С. 26-40
- Дерфлинг К. Гормоны растений. Системный подход: Пер. с англ. – М.: Мир, 1985. – 304 с.
- Кобель Ф. Плодоводство на физиологической основе / Ф. Кобель . – М.: ГИСЛ, 1957. – 375 с.
- Кулаева О. Н. Этилен в жизни растений. / Соросовский образовательный журнал, №11, 1996, с. 78 – 84.
- Либберт, Э. Физиология растений / Э. Либберт. — М.: «Мир», 1976. – 583 с.
- Физиология плодовых растений / Пер. с нем. Л.К. Садовской, Л.В. Оловьевой, Л.В. Шергуновой; Под ред. и с предисл. Р.Р. Кудрявца. – М.: Колос, 1983, 416 с.
- Baad G., Lafer G. Kernobst. Harmonisches Wachstum – olitimaler Ertrag. AVBUCH. 2005.
- Baad, G. et al. liflanzenshutz und Blattdungung im Obstbau – Emlifehlung der staatlichen Obstbauberatung Rheinland-lifalz. DLR Rheinhessen-Nahe-Hunsruck (2004).
- Bangerth, F. (2003): liolar auxin transliort as a signal in the regulation of tree and fruit develoliment. Acta Hortic. 329: 70-76.
- Feucht W., 1982: Das Obstgeholz – Anatomie und lihysiologie des Slirosssystems. Eugen Ulmer, Stuttgart.
- Handschack, M. (1998): Fruchtausdunnung und Bluhstimulierung mit Flordimex / Etrhrel in Alifelanlagen. Dresden, Sachsische Landesanstalt fur Landwirtschaft.
- Rademacher, W., Slieakman, J.B., Evans, R.R., Evans. J.R., Roemmelt, S., Michalek, S., Lux-Endrich, A., Treutter, D/. Iturriagagoitia-Bueno, T. and John, li. (1998): lirohexadione-Ca – a new lilant growth regulator for alilile with interesting biochemical features. In: liroceedings of the 25th Annual Meeting of The lilant Growth Regulation Sociely of America (W.E. Shafer, ed.), The lilant Growth Regulation Society of America, LaGrange, GA, USA, lili. 113-118.
- Rademacher W. (2000). Growth retardants: Effects on gibberellin biosynthesis and other metabolic liathways. Annu.Rev.lilant lihysiol. 51:501-531.
- Saure M.C.(2005). Calcium translocation to fleshy fruit: its mechanism and endogenous control. Sci.Hort.105:65-89.
DuPont™
Инсектицидная защита сада
В 2011 году на российский рынок выходит инновационный продукт компании Дюпон — инсектицид, в корне изменивший традиционные представления о защите сельскохозяйственных культур от вредителей. Новейший уникальный инсектицид КОРАГЕН™ на основе супермолекулы Ринаксипир® (д.в. хлорантранилипрол) с абсолютно новым механизмом действия!
Coragen®
- Действующее вещество: Хлорантранилипрол, 200 г/л
- Химический класс: Антраниламиды
- Препаративная форма: концентрат суспензии
Регистрация Кораген™ на яблоне
Норма применения препарата (л/га) |
Расход рабочей жидкости (л/га) |
Культура |
Вредный объект |
Способ, время, особенности применения препарата |
Срок ожидания/ кратность обработок |
Сроки выхода людей для проведения механизи рованных и ручных работ. |
0,2-0,3 |
1000- 1500 |
Яблоня |
Яблонная плодожорка, листовёртки |
Опрыскивание в период вегетации |
28/2 |
3/10 |
Широкий спектр действия
КОРАГЕН™ высокоэффективен против широкого спектра вредителей (плодожорки, моли, листовертки, колорадский жук, калифорнийская щитовка), обладает быстрым, устойчивым и продленным действием. Действующее вещество нового химического класса, не обладает кросс-резистентностью к применяемым инсектицидам
Чешуекрылые
- Совки (Noctuidae): капустная совка, хлопковая совка, озимая совка
- Листовертки (Tortricidae)
- Плодожорки
- Белянки (Pieridae): капустная белянка, репная белянка
- Серпокрылые моли (Plutellidae): капустная моль, картофельная моль
Двукрылые, Жесткокрылые
- Колорадский жук
- Долгоносик рисовый
- Листовые минеры
- Белокрылки
Уникальный механизм действия
Уникальность Кораген™ в его механизме действия. На данном рисунке представлены основные биохимические мишени существующих инсектицидов:
- Как пиретроиды, так и Авант действуют на натрий-калиевые каналы, только по разному: Пиретроиды приводят к выделению излишнего количества ацетилхолина при прохождении нервного импульса, токсическое действие выражается в сильном поражении двигательных центров и треморе. Индоксакарб приводит к блокировке ионов натрия в нервных клетках, что приводит к остановке питания и движения насекомых.
- ФОС и Карбаматы ингибируют Ацетилхолинэстеразу – фермента отвечающего за передачу нервного импульса.
- Неоникотиноиды подавляют активность Ацетилхолинэстеразы, являются антагонистами никотин-ацетилхолиновых рецепторов, пролонгируют открытие натриевых каналов, при этом блокируется передача нервного импульса, и насекомые погибают от нервного перевозбуждения
- Фипронил блокирует гамма-аминомасляную кислоту, регулирующую прохождение нервного импульса через хлор-ионные каналы в мембранах нервных клеток.
- Ингибиторы синтеза хитина – блокируют образование хитина и нарушают нормальное протекание личиночного процесса
- Все вышеперечисленные группы инсектицидов, совместно с регуляторами роста насекомых (ювеноиды) представляют собой более чем 95% инсектицидов.
- Хлорантранилипрол (Rynaxypyr™) имеет новейший механизм и действует на ткани мышц, т.е не действует на те биохимические процессы, которые блокируются существующими на рынке инсектицидами.
- Рианидин-рецепторы – это крупные белки мембраны (протеины), которые играют ключевую роль в сокращении мышц.
DuPont™ Кораген™ активатор рианидин-рецепторов
Супермолекула Ринаксипир® (д.в. хлорантранилипрол) воздействует на рианидин-рецепторы (RyR), которые регулируют мышечную и нервную активностью насекомых посредством изменения уровней кальция в клетках. В организме насекомого препарат активирует высвобождение внутренних запасов ионов кальция из мышц, вследствие этого вредитель теряет способность сокращать мышцы. В первые часы после опрыскивания Кораген™ вредитель быстро теряет способность к питанию и движению с окончательным параличом и гибелью на протяжении 2-4 дней.
- Паралич мышц
- Быстрая остановка питания
- Гибель в течение 24-72 часов
Овицидная,ови-лаврицидная и лаврицидная активность Кораген™
КОРАГЕН™ эффективен на разных стадиях развития вредителя. Кораген™ обладает ови-ларвицидным действием, которое проявляется в зависимости от времени проведения обработки. Максимально это действие наблюдается при внесении препарата в начале откладки вредителем яиц или по уже отложенным яйцекладкам. Ларвицидное действие происходит за счет мгновенной интоксикации личинки при прогрызании оболочки яйца, обработанного препаратом. Благодаря такому действию Кораген™ предупреждает повреждения культур личинками и имаго вредителей. Кораген™
- действует на эмбрион,
- действует на личинку внутри яйца или в процессе прогрызания оболочки
Исключительная защита растений
В первые часы после опрыскивания Кораген™ вредитель быстро теряет способность к питанию и движению с окончательным параличом и гибелью на протяжении 2-4 дней
Практически мгновенная остановка питания после обработки Кораген™ обеспечивает отсутствие повреждений на культуре
Селективен по отношению к полезной энтомофауне
Малотоксичен для дождевых червей, медоносных пчёл, паразитоидных ос, хищных клещей. Кораген™ низко токсичен для млекопитающих, дождевых червей, медоносных пчел, паразитоидных ос, хищных клещей. Не раздражает кожу и слизистые оболочки, не вызывает аллергии и мутаций. Не обладает канцерогеным действием. Продукция, выращенная с применением этого препарата, имеет высокие показатели безопасности для потребителя.
Пролонгированный контроль и стойкость к смыванию
Кораген тм: трансклокация в растении
Перераспределение Кораген тм в растении происходит за счет трансламинарного передвижения хлорантранилипрола через клетки эпидермиса стебля и по проводящим сосудам ксилемы, что способствует попаданию д.в. в новый прирост
Основные преимущества Кораген™:
- Новейший механизм действия
- Практически мгновенная остановка питания насекомых после интоксикации обеспечивает отсутствие поражения на культуре
- Контролирует численность яблонной плодожорки, листовертки и колорадского жука на разных стадиях развития
- Обладает трансламинарным действием
- Длительный период защитного действия (14-21)
- Устойчивость к смыванию дождем
- Температурный коэффициент
- Малотоксичен для млекопитающих, низкие дозы применения, малоопасен для пользователей
- Малоопасен для полезных насекомых, хищных клещей
Ланнат® 20Л
Описание препарата
- Действующее вещество: Метомил, 200 г/л
- Химический класс: Карбаматы
- Препаративная форма: Концентрат эмульсия
- Упаковка: 5 л
Регистрация Ланнат® 20Л в РФ
Норма применения препарата (л/га) |
Расход рабочей жидкости (л/га) |
Культура |
Вредный объект |
Способ, время, особенности применения препарата |
Срок ожидания/ кратность обработок |
Сроки выхода людей для проведения механизированных и ручных работ. |
1,8-2,2 |
1000 |
Яблоня |
Яблонная плодожорка, листовёртки |
Опрыскивание в период вегетации |
20/3 |
3/10 |
1,0-1,2 |
800-1000 |
Виноград |
листовёртки |
Опрыскивание в период вегетации |
20/3 |
3/10 |
Практическая ценность Ланнат® 20Л
- Необычайно широкий спектр инсектицидной активности
- Превосходное действие на представителей чешуекрылых,жесткокрылых, тлей,трипсов
- Уничтожает яйца, личинки и взрослые особи вредителей
Механизм действия
На клеточном уровне ЛАННАТ® 20Л блокирует фермент ацетилхолинэстеразу в синапсе насекомых, что приводит к нарушению нервной системы вредителя
Признаки поражения выражаются в гиперактивности насекомого и треморе конечностей. Затем наступает паралич со смертельным исходом
Скорость действия
- 40% насекомых погибают в течение 15 минут,
- 70% в течение 1-го часа,
- 90% в течение 4-х часов
Эффективен на всех стадиях развития вредителя
Эффективно действует как на яйца, так и на личинок всех возрастов и имаго вредителя Способен убивать личинок внутри яиц
Широкий спектр действия
Ланнат® показывает высокую эффективность против
- виноградной листовертки (Sparganothis pilleriana),
- гроздевой листовертки (Lobesia botrana),
- листовертки двулётной (Eupoecilia ambiquella),
- яблонной плодожорки (Cydia pomonella),
- восточной плодожорки (Cydia molesta),
- розанной листовертки (Archips rosan),
- сетчатой листовертки (Adoxophyes orana),
- зимней пяденицы (Operophtera brumata),
- листовертки смородинной кривоусой (Pandemis ribeana), американской белой бабочки (Hyphantria cunea) .
Ланнат® также эффективен против тлей, белокрылок, трипсов и цикадок
Поведение на растении
- Трансламинарное действие ЛАННАТ® обеспечивает защиту обеих сторон листа
- Проникая в ткани растения ЛАННАТ® становится устойчивым к выпадению осадков
- Быстрое разложение (50% в течение 3-5 дней)
Устойчив к факторам окружающей среды
- Устойчивость к смыву осадками
- Фотостабильность
- Положительный температурный коэффициент
Ланнат® обладает системным действием?
Ланнат® не является системным инсектицидом и не перемещается в новые точки роста При обработке растений необходимо обеспечивать хорошее покрытие
Ланнат® 20Л быстро разлагается в окружающей среде
- Не накапливается в окружающей среде
- Низкий риск накопления остатков действующего вещества в продукции
- Возможность применения за 10 дней до уборки урожая
- Низкий риск загрязнения водных источников и почвы
- Быстрое восстановление полезных насекомых
Как применять Ланнат®
- Применять в рекомендованных дозировках превентивно в период отрождения первых личинок;
- Убедитесь, что опрыскиватель обеспечивает равномерное покрытие, и объема рабочего раствора достаточно для полной обработки всего растения;
- Повторные обработки проводить с интервалом 10-14 дней;
- Наибольшая эффективность ЛАННАТ® достигается в сочетании с инсектицидом АВАНТ®.
- Надёжно контролирует широкий спектр вредителей
- Активен на всех стадиях развития личинок, обладает контактной активностью против взрослых насекомых (бабочек) и яиц
- Быстродействие: 40% насекомых погибают в течение 15 минут, 70% в течение 1-го часа, 90% в течение 4-х часов
- Возможно применение за 20 дней до уборки урожая
- Вредоносность насекомых быстро снижается после обработки благодаря как контактному, так и кишечному действию
- Очень низкая вероятность возникновения перекрестной резистентности
- Отлично вписывается и дополняет существующие системы защиты винограда и яблони
Авант®
ОПИСАНИЕ ПРЕПАРАТА
Устойчив к факторам окружающей среды
- Устойчивость к смыву осадками
- Положительный температурный коэффициент
Регистрация в РФ
Норма применения препарата (л/га) |
Расход рабочей жидкости (л/га) |
Культура |
Вредный объект |
Способ, время, особенности применения препарата. |
Срок ожидания/ кратность обработок |
Сроки выхода людей для проведения механизи-рованных и ручных работ. |
0,35-0,4 |
1000-1500 |
яблоня |
Яблонная плодожорка, листовёртки |
Опрыскивание в период вегетации |
10/2 |
4/10 |
0,25-0,3 |
800-1000 |
Виноград |
Листовёртки |
Опрыскивание в период вегетации |
10/3 |
4/10 |
Механизм действия
На клеточном уровне АВАНТ® блокирует перенос ионов натрия в нервных клетках насекомых. После интоксикации чувствительные насекомые немедленно перестают питаться и двигаться, а полная их гибель наступает в течение 24-60 часов.
Быстрая остановка питания!
Отсутствие повреждений на культуре (личинки быстро перестают питаться)
Контактно-кишечное действие
АВАНТ® уничтожает гусениц чешуекрылых вредителей, попадая на них:
- при обработке,
- при контакте гусениц с обработанной листовой поверхностью,
- при попадании препарата в кишечник
Ови-ларвицидная и ларвицидная активность
Личинки погибают уже при прогрызании оболочки яйца, если яйцекладка была обработана АВАНТОМ®
АВАНТ ® эффективен против личинок всех возрастов и любого размера
Рекомендации по применению
- АВАНТ® следует применять в рекомендованных дозировках превентивно по яйцекладкам или в период отрождения первых личинок
- Интервал между обработками обычно составляет 10-14 дней, кратность обработок – не более трех — за сезон и не более двух — вподряд
- Норма расхода АВАНТ ® — 250 – 400 мл/га
- Равномерное сплошное покрытие листовой поверхности является важным фактором достижения наивысшего результата
- При сухой и жаркой погоде применять максимальные нормы расхода рабочей жидкости и крупнокапельное опрыскивание во избежание испарения препарата
Позиционирование против яблонной плодожорки
Две обработки Кораген™ в начале сезона для контроля 1 поколения яблонной плодожорки может существенно сократить популяцию вредителя на протяжении всего сезона
DuPont™
Coragen®
Новое измерение инсектицидной защиты
Инсектицид нового поколения с высокой эффективностью против яблонной плодожорки и листоверток
- Новейший уникальный механизм действия, исключающий развитие перекрестной резистентности
- Высокоэффективный и пролонгированный контроль в разных погодных условиях
- Длительный период защитного действия, что дает возможность для сокращения числа обработок на протяжении сезона
Защита сада
Цикл развития яблонной плодожорки
Зимуют гусеницы в коконах в трещинах коры, растительных остатках и в верхнем слое почвы. Окукливаются весной, когда среднесуточная температура достигает 10С. Первые бабочки появляются в конце цветения яблони, лет происходит как правило только в тихую погоду при температуре не ниже 15С и продолжается 1,5-2месяца. Самки начинают откладывать яйца на 3-5 сутки после вылета вначале преимущественно на листья, в дальнейшем главным образом на плоды. Через 5-12 дней из яиц выходят гусеницы, вгрызаются в мякоть плодов, заплетая входные отверстия паутиной и огрызками. При этом гусеницы никогда не внедряются в плод непосредственно из яиц, а ползают некоторое время по поверхности плода в поисках подходящего места. Начало отрождения гусениц первого поколения наблюдается через 17-20 дней после цветения. Из мякоти плода гусеница проникает в семенную камеру и выгрызают семена. Продолжительность их развития 20-40 дней. Закончив питание гусеница покидает плод и уходит на коконирование. В северных районах они зимуют, на юге большая их часть окукливается и дает начало последующим поколениям. В пределах ареала развивается от одного до трех поколений. Частичное третье поколение развивается только на Северном Кавказе, Астраханской области, Ставропольском крае.
Повреждения плодов
После выхода из яиц гусеницы вгрызаются в мякоть плодов, заплетая входные отверстия паутиной и огрызками. Из мякоти плода гусеница проникает в семенную камеру и выгрызают семена. Поврежденные гусеницами плоды червивые; их ходы в мякоти плодов заполнены экскрементами.
Новое решение для защиты сада от чешуекрылых вредителей
Для защиты картофеля от колорадского жука компания Дюпон предлагает уникальный инсектицид Кораген с новейшим механизмом действия
- Действующее вещество: Хлорантранилипрол, 200 г/л
- Химический класс: Антраниламиды
- Препаративная форма: концентрат суспензии
За разработку Корагена Дюпон был удостоен несколькими премиями, в том числе АgroAwards.В октябре 2007 года на церемонии AgroAwards в Глазго (Великобритания) новейшая разработка от компании Дюпон™ – хлорантранилипрол (действующее вещество инсектицида Кораген®) – получила престижную награду AGROW как наиболее инновационное химическое соединение.
И это не случайно, поскольку несмотря на длительные многочисленные научные исследования, в настоящее время на рынке присутствует ограниченное по механизму действия количество инсектицидов. На диаграмме показано, что четверть рынка принадлежит фосорганике, порядка 20% — пиретроиды, 16% — неоникотиноиды, 10% — карбаматы.
Действующим веществом Корагена является Хлорантранилипрол (торговое название Ринаксипир), химический класс антраниламиды На данном рисунке представлены основные «точки» воздействия существующих инсектицидов:
Как пиретроиды, так и Авант действуют на натрий-калиевые каналы, только по-разному: Пиретроиды приводят к выделению излишнего количества ацетилхолина при прохождении нервного импульса, поражение выражается в сильном поражении двигательных центров и треморе. Индоксакарб приводит к блокировке ионов натрия в нервных клетках, что приводит к остановке питания и движения насекомых. ФОС и Карбаматы – яды нервно-паралитического действия. Они Ингибируют Ацетилхолинэстеразу – фермента отвечающего за передачу нервного импульса.
Неоникотиноиды подавляют активность Ацетилхолинэстеразы, являются антагонистами никотин-ацетилхолиновых рецепторов, пролонгируют открытие натриевых каналов, при этом блокируется передача нервного импульса, и насекомые погибают от нервного перевозбуждения Фипронил блокирует гамма-аминомасляную кислоту, регулирующую прохождение нервного импулься череp хлор-ионные каналы в мембранах нервных клеток. Ингибиторы синтеза хитина – блокируют образование хитина и нарушают нормальное протекание личиночого процесса Все вышеперечисленные группы инсектицидов, совместно с регуляторами роста насекомых (ювеноиды) представляют собой более чем 95% инсектицидов. Как было сказано ранее, Rynaxypyr™ имеет новейший механизм действия и не действует на те биохимические процессы, которые блокируются существующими на рынке инсектицидами. Кораген действует на рианодиновые рецепторы – это крупные белки (протеины) мембраны, которые играют ключевую роль в сокращении мышц.
Механизм действия
- Активация реанидиновых (RyRs) рецепторов RyRs- Ca++ каналы, играющие важную роль в сокращении мышц.
- Хлорантранилипрол активирует RyRs, вызывая высвобождение запасов Ca++ и ослабление сокращения мышц, паралич и гибель
- Избирателен для RyRs насекомых, которые в 400-3000 раз чувствительнее RyRs млекопитающих
Действующее вещество хлорантранилипрол активирует рианидин-рецепторы, играющие ключевую роль в сокращении мышц. В организме насекомых препарат активирует высвобождение внутренних запасов кальция из мышц. Сокращение запасов кальция приводит к ингибированию сокращения мышц. В результате вредитель быстро теряет способность к питанию и движению в первые часы после опрыскивания с окончательным параличем и гибелью на протяжении 2-4 дней. Неконтролированное выделение ионов кальция резко уменьшает их внутрение запасы. Вследствие этого организм насекомого не может сокращать мышцы → приводит к параличу
Практически мгновенная остановка питания обеспечивает отсутствие повреждений на культуре
- Быстрая остановка питания
- Проявляется слабость
- Паралич мышц
- Значительное отставание в росте
- Гибель на протяжении 24 — 72 часов
Кораген влияет на следующие стадии развития яблонной плодожорки
Биологическое действие Кораген — это постоянний комплекс овицидного, ови-ларвицидного и ларвицидного действия
- яйца (овицидное действие)
- отродившиеся личинки во время или сразу после выхода из яйца (ови — ларвицидное дествие)
- личинки (ларвицидное действие) погибают вследствии кишечно- контактного действия
Наилучшая эффективность против яблонной плодожорки и гроздевой листовертки достигается при обработке на протяжении эмбрионального развития яиц (до выхода личинок из яиц)
Овицидное действие
Кораген действует на эмбриона внутри яйца. По данным опытов, проведенных в Европе, овицидная активность Корагена оценивается в пределах 65-100% в зависимости от плотности популяции вредителя и времени обработки. При этом, наибольший эффект достигается при обработке до откладки яиц или по яйцекладке.
- Овицидное действие – смерть эмбриона или личинки внутри яйца
- эффективность овицидного действия Корагена — от 65% до 100%, в зависимости от плотности популяции вредителя и времени обработки
- Максимальное овицидное действие — обработка до откладывания яиц или по отложенным яйцам до фазы черной головы
Наилучшая эффективность против яблонной плодожорки или гроздевой листовертки достигается при обработке на протяжении эмбрионального развития яиц (до выхода личинок из яиц)
Ови-ларвицидное действие
Кораген® 20 к.с. обладает также ови-ларвицидным действием, которое проявляется в зависимости от времени проведения обработки. Максимально это действие наблюдается при внесении препарата в начале откладки вредителем яиц или по уже отложенным яйцекладкам..
- Ови-ларвицидное действие — смерть гусениц вследствии обработки яйцекладки: происходит мгновенная интоксикация личинки
- Личинки гибнут при обработке яйцекладок: вылупляющиеся личинки не могут выбраться из яица или погибают сразу после выхода из яица
Ови-ларвицидное действие происходит за счет мгновенной интоксикации личинки при прогрызании оболочки яйца, обработанного препаратом. Личинке после интоксикации не удается выйти из яйца или же гибиль наступает сразу после выхода. Благодаря такому действию Кораген® 20к.с. предупреждает проникновение плодожорки в середину плодов.
Ларвицидное действие
Кроме того, Кораген обладает контактно-кишечной активностью против личинок вредителей. Наибольшее воздействие на личинок наблюдается именно при поедании обработанной поверхности
- Ларвицидное действие – гибель личинок вследствие кишечно-контактной интоксикации
- Наибольшее ларвицидное действие Корагена наблюдается при поедании вредителем обработанной поверхности
Биологическое действие Корагена — это постоянный комплекс овицидного, ови-ларвицидного и ларвицидного действия
Устойчивость к смыву и пролонгированная защита (до 21 дня)
- трансламинарное проникновение действующего вещества
- химическая стабильность в разных погодно-климатических условиях
- высокая инсектицидная активность действующего вещества
Регламенты применения
Культура |
Вредитель |
Кратность обработок |
норма расхода, мл/га |
Объем рабочего раствора л/га |
мин |
макс |
Яблоня |
Яблонная плодожорка и листовертки |
2 |
150 |
300 |
Опрыскивание в период вегетации. Расход рабочей жидкости – 1000-1500 л/га |
Окно применения Корагена против яблонной плодожорки
Кораген является препаратом овицидного, ови-лаврицидного и лаврицидного действия. Но наилучшая эффективность против яблонной плодожорки достигается при обработке на протяжении эмбрионального развития яиц (до выхода личинок из яиц)!!! Кораген® 20 к.с. применяют для защиты любых сортов яблони. Препарат вносят путем наземного опрыскивания в период вегетации культуры. Своевременное опрыскивание является важным моментом в борьбе с яблонной плодожоркой, которая сразу после отрождения из яйца внедряется в плод и становится неуязвимой для препаратов. На яблоне будет зарегестрировано 2 обработки Корагеном, их нужно производить внутри одного поколения (1-го или 2-го). Против первого поколения яблонной плодожорки обработку следует проводить в период массового лета (спаривание и массовая яйцекладка) бабочек. Это определяют по показаниям феромонных ловушек (1 ловушка на 5 га – в промышленных насаждениях). Опрыскивание проводят через 3-5 дней после отлова 1 ловушкой более 5 экземпляров за 7 дней при температуре воздуха во время захода солнца выше + 15,5о С. Последующее опрыскивание проводят через 14-21 день (в случае последовательного применения препарата) в зависимости от численности популяции вредителя (т.е. по показаниям феромонных ловушек). Если принято решение применять Кораген в борьбе со 2-м поколением, то для контроля второго поколения яблонной плодожорки опрыскивание инсектицидом Кораген® 20 к.с. проводят если количество отловленных имаго составляет более 3 экземпляров на ловушку за 7 дней отлова.
Рекомендации
- Норма -150-300 мл/га
- Максимальное количество обработок – 2
- Интервал между обработками 14-21 дней
- Позиционирование:
— две последовательных обработки в пределах одного поколения
- Объем рабочего раствора 1000-1500 л/га
- Срок выхода на обработанные участки- 3 дня для механических и 7 дней для ручных работ.
- Период ожидания 21 день
Риск возникновения резистентности
- Для снижения риска формирования резистентности применение инсектицида Кораген® 20 к.с. ограничивается ДВУМЯ ОБРАБОТКАМИ ЗА СЕЗОН с чередованием отличных по действию инсектицидов
- Поскольку Кораген принадлежит к новому классу инсектицидов, он рекомендуется для использования в антирезистентных программах
Токсичность для млекопитающих
Ниже представлены токсикологические параметры Корагена. Токсичность: Практически не опасен для животных, птиц, рыбы и пчёл.
- ЛД50 оральная >5000 мг/кг
- ЛД50 дермальная >5000 мг/кг
- ЛК50 ингаляционная >5,1 мг/л
- Не раздражает кожу и слизистые оболочки
- Не аллерген
- Не мутаген
- Не канцероген
Высокая селективность к полезным насекомым
Кораген малоопасен для медоносных пчел. Однако рекомендуется проводить опрыскивание, когда пчелы-опылители не активны (например, рано утром или поздно вечером).
низкое или отсутствует влияние на:
- опылителей
- Паразитозных ос
- Хищных энтомофагов
Влияние на окружающую среду
Кораген низкотоксичен по отношению к птицам и рыбам. Препарат токсичен для дафний. Поэтому не следует допускать загрязнение водоемов и других водных источников остатками препарата и тары.
Результаты опытов
Далее будут представлены результаты опытов с Корагеном, проведенных в Европе
Яблонная плодожорка (Cydia pomonella)
По данным 48 опытов, проведенных в странах Европы, Кораген против яблонной плодожорки показывает эффективность до 93%, что почти на 10% выше эффективности фос-органики и на 20% выше в сравнении с пиретроидами.
На данном графике показано, что наилучший эффект от применения Корагена в борьбе с яблонной плодожоркой достигнут при обработке в стадии эмбрионального развития насекомых. Здесь отмечается наименьший процент повреждений – 7,9%.
Биологическая эффективность инсектицидов Дюпон в борьбе с яблонной плодожоркой, СКЗНИИСиВ 2011
Фенофазы |
Вариант |
Стандарт |
Дюпон 1 |
Дюпон 2 |
Контроль |
«Выдвижение соцветий» |
Даты обработок |
03.май |
Эсфенвалерат |
Авант |
0,35 л/га |
Эсфенвалерат |
Без обработок |
«Окончание цветения» |
17.май |
дифлубензурон |
Кораген |
0,2 л/га |
Кораген |
0,2 л/га |
Плод «лещина» |
30.май |
фозалон |
Кораген |
0,2 л/га |
Авант |
0,35 л/га |
Рост и созревание плодов |
17.июн |
феноксикар |
Авант |
0,35 л/га |
диметоат |
01.июл |
фозалон |
Авант |
0,35 л/га |
фозалон |
12.июл |
фенитротион |
22.июл |
хлорпирифос |
Вариант |
Стандарт |
Дюпон 1 |
Дюпон 2 |
Контроль |
% поврежденных плодов |
Даты учетов |
03.июн |
0 |
0 |
0 |
0,4 |
БЭ,% |
100 |
100 |
100 |
— |
% поврежденных плодов |
09.июн |
0 |
0 |
0 |
1,7 |
БЭ,% |
100 |
100 |
100 |
— |
% поврежденных плодов |
17.июн |
0,08 |
0 |
0 |
3,7 |
БЭ,% |
97,8 |
100 |
100 |
— |
% поврежденных плодов |
28.июн |
0,06 |
0 |
0,06 |
5,3 |
БЭ,% |
98,9 |
100 |
98,9 |
— |
% поврежденных плодов |
05.июл |
0,25 |
0 |
0,1 |
6,3 |
БЭ,% |
96,9 |
100 |
98,4 |
— |
% поврежденных плодов |
12.июл |
0,2 |
0 |
0,1 |
9,1 |
БЭ,% |
97,8 |
100 |
98,9 |
— |
% поврежденных плодов |
22.июл |
0,4 |
0 |
0,17 |
14,1 |
БЭ,% |
97,2 |
100 |
98,7 |
— |
Характеристика препаративной формы
- Смешиваемость
- Текучесть
- Растворимость
Качество препаративной формы в через 12 месяцев хранения
- Отличное качество препаративной формы
- Минимальное расслоение
Стабильность в баковой смеси
Тест
- pH 5, 7, 9
- время: 0 – 72 часа
- температуры: 4°C, 20°C и 40°C
- концентрация: 10 гдв/1000L (10ppm), 200 гдв/1000L (200ppm)
Кораген™ химически стабилен даже в экстремальных условиях (например, 10 ppm; pH = 9; T = 40°C) в течение 72 часов.
Совместимость
Тест на совместимость
- Пестициды смешиваются в зарегистрированных дозировках
- Жёсткая вода (с жёсткость от 2,4 до 3,6 мг-экв/л)
- Визуальная оценка: 0 – 18 часов
- Расторимость оценивается через 18 часов
В 106 проведенных тестах, Кораген™ был совместим со всеми тестируемыми препаратами
>65 препаратов было протестировано
Active Ingredient |
Active Ingredient |
Active Ingredient |
Acetamiprid |
Dinocap |
Methoxyfenozide |
Alphamethrin |
Dithianon |
Metiram |
Azinphos-methyl |
Dofentezine |
Myclobutanil |
Azoxystrobin |
Esfenvalerate |
Oxamyl |
Bifenthrin |
Famoxadone + Cymoxanil |
Penconazole |
Boscalid |
Famoxadone + Fosethyl-al |
Phosmet |
Bupirimate |
Famoxadone + Mancozeb |
Picoxystrobin |
Buprofezin |
Famoxate + Cymoxanil + Folpet |
Propiconazole |
Captan |
Fenoxicarb |
Proquinazid |
Carbaryl |
Fludioxinil + Cyprodinil |
Pyridaben |
Chlorothalonil |
Flusilazole |
Pyrimetanil |
Chlorpyrifos |
Fosetyl-al + Folpel + Cymoxanil |
Quinoxyfen |
Ciproconazole |
Imidacloprid |
Spinosad |
Copper-hydroxide |
Indoxacarb |
Sulfur |
Cyfluthrin |
Iprodione |
Tebuconazole |
Cymoxanil + Copper Oxychloride |
Kresoxim-methyl |
Thiacloprid |
Cymoxanil + Mancozeb |
Lambda- cyhalothrin |
Thiamethoxam |
Cyprodinil |
Malathion |
Trifloxystrobin |
Deltamethrin |
Mancozeb |
Ziram |
Dichlofluanid |
Metalaxyl + mancozeb |
|
Difenconazole |
Methomyl |
|
Инсектицид нового поколения с высокой эффективностью против яблонной плодожорки и листоверток
- Новейший уникальный механизм действия, исключающий развитие перекрестной резистентности
- Высокоэффективный и пролонгированный контроль в разных погодных условиях
- Длительный период защитного действия, что дает возможность для сокращения числа обработок на протяжении сезона
Жидёхина Т.В., Родюкова О.С., Магомедова С.А., Бочарова Т.Е. Хозяйственно-биологическая и биохимическая оценка новых сортов смородины черной//Садоводство и виноградарство №5, М.-2007, стр.15-16
Т.В. Жидёхина, заведующая отделом ягодных культур, кандидат с.-х. наук;
О.С. Родюкова, научный сотрудник отдела ягодных культур;
С.А. Магомедова С.А., аспирант ВНИИС им. И.ВМичурина;
Т.Е. Бочарова, старший лаборант лаборатории биохимии МичГАУ
Хозяйственно-биологическая и биохимическая оценка новых сортов смородины черной
Плодоводство — одна из традиционных отраслей сельскохозяйственного производства Центрального Черноземья. Важная роль в снабжении населения одами и ягодами с высоким содержанием биологически активных веществ принадлежит ягодным культурам. Смородина черная является одной из наиболее распространенных ягодных культур. Она цениться за скороплодность, урожайность, зимостойкость, высокие лечебно-диетические качества ягод, пригодность почти для всех видов технологической переработки, легкость размножения и возможность полной механизации возделывания и уборки.
Экономическая эффективность возделывания смородины черной в промышленных и личных подсобных хозяйствах обуславливается, в первую очередь, правильным подбором сортов, гарантирующих ежегодные высокие урожаи, в конкретной зоне возделывания, и, как следствие, максимальный коммерческий эффект.
Во ВНИИС им. И.В. Мичурина проводиться оценка новых сортов смороны черной по комплексу хозяйственно-ценных признаков, с целью выделения перспективных для внедрения в производство. В результате проведенных следований установлено, что продуктивность новых сортов смородины черной, в пересчете на гектар, в условиях ЦЧР, при соблюдении необходимого комплекса агротехнических мероприятий, колеблется от 8 до 11 т/га (табл. 1).
Таблица 1 — Оценка сортов смородины черной по продуктивности и массе ягод (в среднем за 1997-2006 гг)
Название сорта |
Генетическое происхождение* |
Срок созревания |
Средняя масса ягоды, г |
Урожай, кг./куст |
Диво Звягиной |
ЕСДЕск |
СР |
1,5 |
2,6 |
Зеленая дымка |
ЕСДЕск |
С |
1,2 |
2,7 |
Кардинал |
ЕСДЕск |
С |
1,0 |
2,4 |
Кармелита |
ЕСДЕск |
СР |
1,4 |
2,4 |
Лебедушка |
ЕСДЕск |
С |
1,2 |
2,7 |
Любава |
ЕСДЕск |
С |
0,7 |
2,5 |
Маленький принц |
ЕСДЕск |
Р |
1,5 |
3,3 |
Сенсей |
ЕСДЕск |
СР |
1,7 |
2,5 |
Созвездие |
ЕСДЕск |
Р |
1,4 |
2,8 |
Талисман |
ЕСДЕск |
СП |
1,2 |
2,9 |
Тамерлан |
ЕСДЕск |
С |
1,5 |
3,0 |
Фея ночи |
ЕСДЕск |
С |
1,2 |
2,9 |
Чернавка |
ЕСДЕск |
СП |
1,3 |
3,2 |
Черный жемчуг |
ЕСДЕск |
С |
1,4 |
3,2 |
Шалунья |
ЕСД |
Р |
1,7 |
2,6 |
Элевеста |
ЕСДЕск |
С |
1,2 |
2,5 |
НСР05 |
0,2 |
0,4 |
* где:
- Е — ribes nigrum ssp. Europaeum Jancz;
- С — ribes nigrum ssp. Sibiricum Wulf.;
- Д — ribes dikuscha Fisch.;
- Еск — ribes nigrum scandinavicum
Максимальной продуктивностью, в условиях Тамбовской области, характеризуются следующие сорта смородины черной: Маленький принц, Чернавка, Черный жемчуг и Тамерлан.
Основным резервом повышения производства ягод смородины черной, особенно при дефиците рабочей силы, является перевод культуры на промышленный способ возделывания, позволяющий использовать механизацию при садке, агротехническом уходе и сборе урожая. Наибольшую трудоемкость из всех видов работ составляет сбор урожая. Установлено, что затраты на уборку 1 га смородины черной составляют 250-300 чел.-дней (Алеков Н.С., 1970).
Промышленную плантацию необходимо подготавливать для механизированной уборки урожая. С этой целью весной проводят прореживание, удаление сильно полеглых и старых ветвей. Плантацию содержат в чистом от сорняков стоянии. При обработке почвы не допускают образования гребней и канав у основания насаждений. В работах О.Ф. Якименко (1988, 2001 и др.) установлено, что эффективность использования комбайна зависит в первую очередь от авильного подбора сортов, отвечающих требованиям по физико-паническим свойствам ягод, биологическим особенностям роста и развития растений. Технологическая оценка сортов смородины черной показала, что практически все они пригодны для индустриальной технологии возделывания (табл. 2).
Таблица 2 — Оценка сортов смородины черной по лимитирующим признакам к машинной уборке урожая (в среднем за 1997-2006 гг.)
Название сорта |
Урожай в недоступных зонах (0,0-0,3 м и более 1,8 м), % |
Одновременность созревания ягод, % |
Физико-механические свойства ягод |
усилие отрыва, г |
усилие раздавливания, г |
Модель сорта |
<15 |
>90 |
50-150 |
>200 |
Диво Звягиной |
<15 |
95-100 |
129 |
422 |
Зеленая дымка |
<12 |
90-95 |
114 |
363 |
Кардинал |
<12 |
95-100 |
134 |
368 |
Кармелита |
<10 |
95-100 |
112 |
430 |
Лебедушка |
<12 |
95-100 |
139 |
355 |
Любава |
<12 |
90-95 |
154 |
467 |
Маленький принц |
<10 |
95-100 |
120 |
386 |
Сенсей |
<15 |
95-100 |
108 |
422 |
Созвездие |
<12 |
90-95 |
131 |
377 |
Талисман |
<12 |
90-95 |
126 |
310 |
Тамерлан |
<5 |
90-95 |
130 |
403 |
Фея ночи |
<10 |
90-95 |
134 |
397 |
Чернавка |
<5 |
90-95 |
128 |
452 |
Черный жемчуг |
<10 |
90-95 |
120 |
441 |
Шалунья |
<10 |
95-100 |
109 |
383 |
Элевеста |
<20 |
95-100 |
123 |
295 |
В садоводческих хозяйствах при наличии больших площадей под смородиной сбор ягод, как правило, проводят в один прием. Сорта смородины черной, селекции ВНИИС им. И.В. Мичурина, характеризуются дружным созреваем ягод в условиях Тамбовской области. В связи с повышением требований к качеству ягод смородины уборку необходимо проводить при их полном созревании. Анализ физико-механических свойств ягод показал, что по усилиям отрыва и раздавливания они соответствуют заданным параметрам модели сорта. Прочность прикрепления ягод определяет их осыпаемость и полноту съема. В значительной степени этот показатель зависит от условий вегетационного периода, в сухую жаркую погоду, при отсутствии орошения ягоды смородины черной осыпаются сильнее. Установлено, что в среднем усилие отрыва ягод составляет 126 г, с колебаниями от 108 (Сенсей) до 154 г (Любава). Товарное качество собранной продукции зависит от прочности кожицы ягод. Усилие необходимое для раздавливания ягод колеблется от 295 г (Элевеста) до 467 г (Любава). При перезревании ягод прочность кожицы резко снижается.
В последнее время большое значение приобретает оценка ягод смородины черной по биохимическому составу. В результате проведенной комплексной оценки установлено, что новые сорта характеризуются разными уровнями накопления биологически активных веществ (табл. 3).
Таблица 3. Биохимическая ценность ягод сортов смородины черной (в среднем за 1997-2006 гг.)
Название сорта |
Содержание в ягодах: |
Витамина С, мг% |
Антоцианов, мг% |
Катехинов, мг% |
Сахаров, % |
Органических кислот, % |
Пектина, % |
Диво Звягиной |
142,8 |
605 |
638 |
9,9 |
3,4 |
2,4 |
Зеленая дымка |
176,6 |
465 |
397 |
10,9 |
3,0 |
1,9 |
Кардинал |
156,2 |
663 |
416 |
11,5 |
3,4 |
2,5 |
Кармелита |
127,3 |
618 |
203 |
ПД |
2,7 |
2,3 |
Лебедушка |
183,1 |
479 |
251 |
9,0 |
3,4 |
2,6 |
Любава |
176,5 |
259 |
434 |
9,7 |
ЗД |
1,6 |
Маленький принц |
140,5 |
527 |
276 |
9,9 |
2,6 |
2,3 |
Сенсей |
148,0 |
515 |
376 |
9,3 |
2,7 |
1,8 |
Созвездие |
174,6 |
449 |
448 |
10,9 |
2,6 |
1,0 |
Талисман |
158,7 |
553 |
296 |
10,5 |
3,2 |
2,1 |
Тамерлан |
146,0 |
439 |
389 |
9,3 |
3,2 |
2,1 |
Фея ночи |
177,2 |
620 |
337 |
11,3 |
3,5 |
2,0 |
Чернавка |
133,2 |
738 |
519 |
10,0 |
2,7 |
2,5 |
Черный жемчуг |
134,9 |
312 |
535 |
9,8 |
2,9 |
1,9 |
Шалунья |
144,2 |
475 |
416 |
11,4 |
3,2 |
2Д |
Элевеста |
143,9 |
459 |
430 |
10,9 |
2,4 |
2,3 |
Лимиты min |
127,3 |
259 |
203 |
9,0 |
2,4 |
1,0 |
max |
183,1 |
738 |
638 |
11,5 |
3,5 |
2,6 |
Одним из основных показателей, определяющих ценность сорта, является содержание витамина С (аскорбиновой кислоты). Синтез и накопление аскорбиновой кислоты у одного и того же сорта варьирует в зависимости от очень многих условий: плодородия почвы, применяемой агротехники, качества и количества удобрений, уровня освещенности, водного режима, температуры, фазы онтогенеза и т.д. Установлено, что в ягодах смородины черной, в среднем, накапливается от 127,3 (Кармелита) до 183,1 мг% (Лебедушка) витамина С. В группусортов с высоким содержанием витамина С входят: Лебедушка, Фея ночи, Зеленая дымка, Любава, Созвездие, Талисман и Кардинал. Установлена отрицательная корреляционная зависимость между содержанием аскорбиновой слоты и массой ягоды, которая изменялась от г= 0,25 (в 2005 г) до г=-0,95 (в 99 г).
Основой окраски ягод являются антоцианы. Эти вещества представляют 5ой пигменты клеточного сока. При гидролизе антоцианов минеральными кислотами они расщепляются до антоцианидинов (пералгонидин, цианидин, дельфинидин, мальвидин, пеонидин, петунидин). На синтез этих веществ в растениях существенное значение оказывают интенсивность света, температура воздуха и количественное накопление Сахаров. Г.Б. Самородова-Бианки (1962) учила антоциановые пигменты смородины черной и установила, что в мякоти и кожице ягод присутствуют цианидин и дельфинидин. Общее содержание антоцианов в ягодах новых сортов колеблется от 259 (Любава) до 738 мг% (Чернавка). Установлена положительная корреляционная зависимость между накоплением Сахаров и содержанием антоцианов, которая изменялась от г= 0,37 (в 98 г) до г= 0,73 (в 2005 г).
Считается, что из всех изучавшихся полифенолов наиболее высокой Р-витаминной активностью обладают катехины (Петрова В.П., 1986). Катехины — бесцветные кристаллические вещества, часто горковато-вяжущего вкуса, хорошо растворимы в воде и спирте. При полимеризации катехинов образуются дульные вещества. Анализ полученных данных показывает, что содержание катехинов в ягодах новых сортов смородины черной колеблется от 203 (Кармелита) до 638 мг% (Диво Звягиной).
В ягодах смородины черной сахара представлены, в основном, глюкозой фруктозой. Лимиты по сумме Сахаров в ягодах новых сортов смородины черной составляют от 9 (Лебедушка) до 11,5% (Кардинал). Свыше 10% Сахаров накапливают — Кардинал, Шалунья, Фея ночи, Кармелита, Зеленая дымка, Созвездие, Элевеста, Талисман и Чернавка.
Для смородины черной характерно высокое содержание органических кислот. В ее ягодах содержатся лимонная, виннокаменная, янтарная, салициловая, яблочная, фосфорная кислоты. Анализ ягод исследованных сортов по содержанию, то органических кислот показал незначительные различия. Общее количество кислот колеблется от 2,4 (Элевеста) до 3,5% (Фея ночи).
Пектиновые вещества относятся к одной из групп лучезащитных соединений, регулируют водоудерживающую способность, тургесцентность растительных тканей и определяют в значительной степени газообмен и устойчивость ягод при хранении. Установлено, что в зрелых ягодах смородины черной всегда преобладает протопектин. Новые сорта смородины черной богаты пектином, в их ягодах содержится от 1 (Созвездие) до 2,6% (Лебедушка). В литературе встречаются данные о влиянии пектиновых веществ на качество получаемо при переработке продукции. Пектин обладает способностью сохранять в желе природный цвет и аромат ягод.
В результате проведенных исследований установлено, что сорта смородины черной Чернавка, Кардинал, Кармелита, Талисман и Фея ночи характеризуется комплексом высоких уровней содержания в ягодах биологически активных веществ.
Таким образом, использование в промышленных насаждениях и личных хозяйствах новых сортов смородины черной селекции ВНИИС им. И.В. Мичурина позволит получать высокие урожаи ягод с богатым биохимическим составом. По результатам государственного сортоиспытания допущены к использованию в производстве по Центрально-Черноземному региону, среди изучаемых, следующие сорта смородины черной — Зеленая дымка, Маленький принц, Тамерлан, Чернавка, Черный жемчуг и Шалунья.
Члены АППЯПМ
Татарин Вадим Григорьевич
генеральный директор ООО «Ангелинский сад» (Краснодарский край)
|
|