Мичуринский государственный аграрный университет
Мичуринск -Наукоград
Юг-Полив

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективностьГудковский В.А.

Гудковский В.А., доктор сельскохозяйственных наук, академик РАСХН.*
Кожина Л.В.*
Балакирев А.Е.*
Назаров Ю.Б.*
Урнев В.Л. **
*ГНУ ВНИИС им. И.В. Мичурина, Россия.
** ОАО «Агроном» Липецкая область, Россия.

Ключевые слова: плоды, сорта яблони, условия хранения, обычная (ОА), регулируемая (РА), модифицированная (МА) атмосфера, 1-метилциклопропен, этилен, α-фарнезен, триены, антиоксиданты, загар.

Влияние условий хранения на поражаемость загаром и качество плодов яблони средней зоны России.

Чаще всего спрос на плоды в средней зоне садоводства России возрастает с середины декабря и продолжается до мая (3 — 8 месяцев хранения), при этом нет гарантии полной реализации продукции. Отсутствие спроса связано в первую очередь с низким товарным качеством плодов, высокой ценой и наличием на рынке импортных яблок (Польша, Китай, Молдавия, Украина и др.) с более привлекательным для населения соотношением цена/качество.

Следует полагать, что после вступления в ВТО садоводство России окажется в еще более жесткой конкурентной среде. Необходимыми условиями противостояния вызовам международного рынка являются повышение качества производимой продукции, ее оперативной подачи в различные регионы страны в необходимые сроки, экономически обоснованное использование различных технологий хранения.

Как известно, качество плодов и их лежкоспособность формируется под влиянием комплекса биологических, экологических, агротехнических, организационно-экономических и послеуборочных факторов (условия хранения, товарной обработки, реализации плодов и др.) [1,2]. Нарушения в любом звене этой системы приводят к снижению эффективности конечного результата.

Как показывает практика, создание современных холодильников и садов без освоения новейших знаний по управлению процессами жизнедеятельности плодов на всех этапах: сад – хранение – доведение до потребителя, также не гарантирует получение высокого конечного результата.

Жизнь плода, как любого биологического объекта – ограничена, поэтому важно для эффективного ведения производства сохранить товарные качества продукции при минимальных потерях.

Основные потери при хранении плодов: от физиологических  заболеваний (загар, подкожная пятнистость, побурение сердцевины и мякоти, разложение и др.) и грибной инфекции (глеоспориозная, плодовая гниль, серая плесень и др.); убыль массы при дыхании и транспирации; потери качества (снижение твердости, ухудшение внешнего вида, вкуса, аромата и др.). Существующие технологии хранения — обычная, регулируемая (со стандартным >1,5%, ультранизким 0,8-1,2 % и еще более низким — 0,4-0,6% содержанием кислорода), модифицированная атмосферы имеют свои преимущества и недостатки, отличаются по затратам на их осуществление, но не обеспечивают в полной мере защиту от потерь [3-8].

Освоение крупными плодоводческими хозяйствами новых технологий, сочетающих хранения плодов в ОА, РА с послеуборочной обработкой плодов ингибитором биосинтеза этилена 1-метилциклопропеном (1-МЦП, препарат «Smart Frech», США, Фитомаг®, Россия) позволяет значительно снизить потери от заболеваний, сохранить качество плодов [1-10]. При этом, даже в рамках одной технологии существенное влияние на конечный результат оказывают условия хранения (температура, содержание СО2, О2, этилена).

Механизмы поражения плодов основными видами физиологических заболеваний различны, однако выявлены и общие закономерности: восприимчивость к каждому из них в различной степени зависит от минерального, гормонального и антиоксидантного баланса плода, его физиологического состояния.

Наши многолетние исследования и результаты других специалистов подтвердили, что восприимчивость плодов к загару определяется генотипом сорта, в меньшей степени загаром поражаются плоды, снятые в оптимальные сроки, с высоким содержанием антиоксидантов, кальция и сбалансированным содержанием других элементов минерального состава [1,11-14]. Однако, на лежкоспособность плодов (даже очень высокого качества) существенное влияние оказывают условия хранения.

Для мониторинга физиологического состояния плодов широко используются такие биохимические показатели, как эндогенный этилен, α-фарнезен, продукты окисления фарнезена (КТ281) и твердость, которые позволяют не только оценить качество плодов, но и выявить вероятность развития физиологических заболеваний, которые составляют основную долю  потерь при хранении плодов.

В связи с вышеизложенным, целью наших исследований является: 1) выявление роли биохимических показателей в развитии загара плодов яблони; 2) изучение влияния условий хранения на качество плодов средней зоны садоводства России для экономически обоснованного применения разработанных технологий хранения.  

МЕТОДИКА И МАТЕРИАЛЫ ИССЛЕДОВАНИЯ

Исследования выполнены в 2009-2011 гг. Объекты исследований – 2 сорта яблони: Мартовское, Синап Северный. Съем плодов проводили в промышленных насаждениях, при содержании эндогенного этилена 0,8-1,5 ppm, хранили – в производственных фруктохранилищах с обычной и регулируемой атмосферой (ОАО «Агроном» Липецкой области), использованы результаты исследований, проведенных в  ЗАО «15 лет Октября». Биохимические исследования выполнены в лаборатории отдела послеуборочных технологий ГНУ ВНИИС им. И.В. Мичурина (г. Мичуринск). Содержание этилена — определяли газохроматографически (GC-2014, SHIMADZU, Япония) [15], α-фарнезена и продуктов его окисления – спектрофотометрически (СФ-201, Россия) [16], содержание суммы фенольных соединений (СФС), рутина – спектрофотометрически [17] твердость плодов измеряли пенетрометром FT-327 с плунжером для яблок.

Часть плодов в день съема обрабатывали ингибитором этилена препаратом Фитомаг®, по разработанной во ВНИИС им. И.В. Мичурина технологии. Контрольные и обработанные плоды закладывали на хранение в камеры с обычной и регулируемой атмосферой (таблица 1).

Таблица 1. Условия хранения в различных вариантах опыта.

ОА*+контроль +2±0,5 0,03 21 5-14,5
ОА+МЦП
1-РА+контроль +2±0,5 3-4 16-18 38-78
1-РА+МЦП
2-РА+контроль +2±0,5 1,2 1,2 10-40
2-РА+МЦП
3-РА+контроль +2±0,5 1,2 1,2 45-133
3-РА+МЦП

ОА* — обычная атмосфера  — высокий уровень содержания кислорода и минимальный — углекислого газа (О2 -21%, СО2 -0,03%), экзогенный этилен 5,2-14,3 ppm);

1-РА — односторонне регулируемая атмосфера  – высокий уровень содержания кислорода (О2 -16-17%), повышенный — углекислого газа (СО2 -3-4%); экзогенный этилен – 38-78 ppm;

2-РА — регулируемая атмосфера с ультранизким содержанием кислорода  — СО2 -1,2%; О2 -1,2%, экзогенный этилен –10-40 ppm;

3-РА — регулируемая атмосфера с ультранизким содержанием кислорода  — СО2 -1,2%; О2 -1,2%, высокий уровень экзогенного этилена – 45-133 ppm.

Температуру хранения поддерживали на уровне +2 ±0,5оС.

Уровень этилена (С2Н4) в окружающей среде контролировали еженедельно. Динамика содержания экзогенного этилена в различных условиях хранения представлена на рисунке 1.

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективностьРисунок 1. Содержание экзогенного этилена в различных условиях хранения.

Для выявления роли экзогенного этилена были проведены специальные исследования, с использованием полиэтиленовых пакетов (модифицированная атмосфера – МА). (Таблица 2).

Таблица 2. Условия хранения в различных вариантах опыта.

Мартовское
ОА+контроль +2±0,5 0,03 21 0,8-1,5
ОА+МЦП
МА+контроль +2±0,5 4,5-8,9 14-18 107-280
МА+МЦП +2±0,5 3-5 16-19 1,8-4,8
МАсмесь+контроль +2±0,5 6-10 12-18 124-286
МАсмесь+МЦП
Богатырь
ОА+контроль +2±0,5 0,03 21 0,8-1,5
ОА+МЦП
МА+контроль +2±0,5 3,5-9 15-18 74-145
МА+МЦП +2±0,5 3,5-5 16-19 8-25
МАсмесь+контроль +2±0,5 3-6 16-19 47-120
МАсмесь+МЦП

Для создания МА использовали пакеты Xtend израильской фирмы «StePac». Объекты исследования: плоды сорта Мартовское и Богатырь, содержание эндогенного этилена при съеме 0,1-0,3 ppm. Варианты опыта: МА+контроль, МА+1-МЦП, МА-смесь (в один пакет были заложены плоды обработанные ингибитором биосинтеза этилена и без обработки). Условия хранения плодов представлены в таблице 2.

Степень поражения плодов загаром оценивали в течение 6 месяцев и дополнительно после 1 и 7 дней хранения  при +20оС в соответствии с ГОСТ 21122-75.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

В результате проведенных исследований были получены экспериментальные данные, позволяющие объективно оценить влияние основных факторов хранения — уровня О2, СО2, этилена при пониженной (+2 ±0,5оС) температуре хранения в сочетании с послеуборочной обработкой 1-МЦП и без нее на лежкоспособность двух сортов яблони — Мартовское, Северный Синап.

Различия ответной реакции плодов на условия хранения, до проявления внешних признаков заболеваний, проявились в абсолютном содержании и динамике биохимических показателей (эндогенный этилен, α-фарнезен, продукты окисления α-фарнезена (КТ281), твердость) еще на начальных этапах и стали более очевидными к середине и концу хранения.

Влияние условий хранения на накопление эндогенного этилена в плодах. Влияние эндогенного этилена на качество плодов и развитие загара.

Этилен – гормон созревания. По содержанию этилена в межклеточном пространстве оценивают физиологическое состояние, степень зрелости плодов.

Мартовское. Содержание этилена в плодах увеличивалось по мере их созревания. В целом, в необработанных плодах в первый месяц хранения содержание этилена увеличилось в десятки раз (до 200-400 ppm, против 0,8-1,5 ppm при съеме) и достигало максимальных значений лишь к пятому-шестому месяцу хранения, влияние условий хранения проявилось в уровне накопления этилена (рис.2).

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность

Рисунок 2. Влияние условий хранения на накопление эндогенного этилена в плодах яблони.

Максимально высоким содержанием этилена (более 1200 ppm) в плодах выделились 4 варианта, хранение которых проходило в атмосфере с высоким содержанием кислорода (16-21%), это — ОА+контроль, ОА+МЦП, 1-РА+контроль, 1-РА+МЦП. В варианте 1-РА+контроль высокие уровни эндогенного этилена были отмечены в середине января — 724 ppm, возможно, что максимальные значения этилена приходились на ноябрь-декабрь, когда показания не снимались, а зафиксированное содержание относилось к климактерическому спаду (Рисунок 2).

Более низким содержанием этилена отличались плоды, хранившиеся в условиях низкого содержания кислорода (1,2%) и повышенного – углекислого газа (1,2%), это — варианты 2-РА+контроль, 3-РА+контроль (этилен 300-700 ppm).

В рeезультате исследований подтверждено, что послеуборочная обработка 1-МЦП ингибирует синтез и накопление этилена, при этом условия хранения влияют на продолжительность ингибирования. Так, после четырех месяцев хранения  в ОА и 1-РА различия между вариантами уже не столь очевидны, как в начале опыта  (контроль 696 и 724 ppm, 1-МЦП – 527 и 152 ppm соответственно), далее – различия еще более сглаживаются, а созревание сопровождает интенсивный подъем содержания этилена – до 1300-1600 ppm. То есть, в условиях высокого содержания кислорода (ОА, 1-РА) содержание эндогенного этилена даже в обработанных 1-МЦП плодах, после определенного периода, достигает  уровня необработанных плодов, следовательно, одна обработка, без ингибирующих созревание условий хранения, не может обеспечивать надежное сохранение продукции.

В условиях РА с ультранизким содержанием кислорода различия между контрольными и обработанными плодами были очевидны до конца хранения. Максимальное ингибирование созревания плодов достигалось в условиях 2-РА+МЦП  — на протяжении всего периода хранения содержание изучаемого показателя не превышало 29,3 ppm (контроль – 152-430 ppm), в условиях 3-РА+МЦП содержание этилена в плодах существенно выше – 200-400 ppm (контроль – 400-727 ppm). Возможно, высокий уровень экзогенного этилена (особенно в первый месяц хранения  — до 76 ppm) в условиях 3-РА (рис.1), оказал стимулирующее влияние на накопление эндогенного этилена, в результате и в контрольных и в обработанных плодах содержание показателя существенно выше, чем при хранении в условиях более низкого экзогенного этилена (вариант 2-РА).

Полученные данные позволяют полагать, что наиболее существенное влияние на ингибирование эндогенного этилена оказывает низкое содержание кислорода (1,2 %), повышенное содержание углекислого газа (1,2%), послеуборочная обработка 1-МЦП при совместном воздействии факторов – эффективность ингибирования увеличивается (вариант 2-РА+МЦП). Показано, что высокое содержание кислорода (и при высоком -3-4% и при нормальном -0,03% содержании углекислого газа) стимулирует синтез эндогенного этилена (1-РА, ОА), высокий уровень экзогенного этилена (особенно в первый месяц хранения), также оказывает стимулирующее влияние на внутриплодное содержание этилена (3-РА).

В результате проведенных исследований показано, что эндогенный этилен оказывает прямое влияние на качество плодов. Чем выше его содержание, тем выше степень зрелости, при перезревании — ниже содержание биологически активных веществ, ниже твердость, выше восприимчивость к разложению, внутреннему побурению, грибной инфекции и др. То есть, чем выше содержание эндогенного этилена, тем ниже товарные и потребительские качества плодов.

Роль С2Н4 в развитии загара до конца неясна. Однако, опосредованное влияние гормона на развитие заболевания было выявлено в результате собственных исследований и исследований зарубежных авторов [1-4,18-20]. Было показано, что увеличение накопления α-фарнезена происходит только после повышения эндогенного этилена в плодах до физиологически активных концентраций. При съеме плодов чем выше уровень содержания этилена (при поздних сроках съема, после обработки плодов стимуляторами созревания), тем выше содержание α-фарнезена, но не восприимчивость к загару. Чаще всего увеличение содержания эндогенного этилена после съема плодов сопровождается накоплением α-фарнезена и продуктов его окисления, что приводит к развитию загара. Но известны случаи, когда плоды сорта Антоновка обыкновенная с низким уровнем эндогенного этилена (1,5-5 ppm) содержали высокий уровень КТ281 в кутикуле кожицы 9-15 нмоль/см2, при этом 30-80% плодов были поражены побурением кожицы в условиях холода и 100% — при доведении до потребителя. Таким образом, загаром поражаются плоды с различным содержанием эндогенного этилена (от 5 до 1000 ppm). Вероятно, наряду с эндогенным этиленом, влияют на развитие заболевания и другие эндогенные и экзогенные факторы.

Северный Синап. Содержание эндогенного этилена в плодах этого сорта в 1,5-2 раза ниже, чем у сорта Мартовское. Реакция сорта на условия  хранения в целом совпадает с реакцией сорта Мартовское: максимальный уровень содержания этилена (800 ppm) отмечен в конце хранения (6,5 месяцев) в варианте ОА+контроль, в пяти вариантах –  ОА+МЦП, 1-РА, 3-РА, 2-РА, 1-РА+МЦП содержание этилена после 4,5 месяцев хранения соответствовало 300-550 ppm, причем у двух последних вариантов синтез этилена в течении первого месяца хранения существенно ингибировался (60,2 и 12,3 ppm соответственно), а в варианте 3-РА+МЦП – ингибирование продолжалось до марта (23-148ppm), далее – заметный подъем (350 ppm).

Минимальным содержанием эндогенного этилена, также, как у сорта Мартовское, отличался вариант 2-РА+МЦП — на протяжение всего периода хранения содержание изучаемого показателя составляло от 6 до 46 ppm.

Влияние условий хранения на изменение твердости плодов. Влияние твердости на качество плодов и развитие загара.

Твердость – один из основных объективных показателей для оценки качества плодов. На международном рынке плоды с твердостью ниже 5-6 кг/см2 (в зависимости от сорта) не предлагаются для реализации.

Мартовское. При созревании твердость плодов снижается. Результаты исследований показывают, что факторы хранения, стимулирующие созревание (синтез эндогенного этилена) способствуют снижению твердости, а ингибирующие созревание – сдерживают распад клеточных структур и способствуют ее сохранению. Минимальной твердостью плодов на протяжении всего периода хранения отличались контрольные варианты, хранившиеся в среде с высоким содержанием кислорода и этилена: ОА+контроль, 1-РА +контроль, 3-РА+ контроль. После 5 месяцев хранения содержание показателя было менее 5 кг/см2 , что свидетельствовало о низком товарном качестве, существенно снижало цену и саму возможность реализации этих партий плодов (рисунок 3).

Хранение плодов в среде с ультранизким содержанием кислорода и более низким содержанием этилена (условия 2-РА) обеспечивало даже после шести месяцев сохранение твердости контрольных плодов на уровне 6,6 кг/см2 .

Эффективность послеуборочной обработки 1-МЦП как ингибитора созревания проявляется и в сохранении твердости плодов. Однако в условиях повышенного содержания кислорода твердость обработанных плодов была ниже, чем твердость контрольных плодов в среде с ультранизким его содержанием (1-РА+МЦП, ОА+МЦП —  5,4, 5,6 кг/см2 соответственно, 2-РА+к – 6,6 кг/см2 ). В то же время, плоды двух вариантов, хранившихся в условиях ультранизкого содержания кислорода в сочетании с послеуборочной обработкой 1-МЦП (2-РА+МЦП, 3-РА+МЦП) отличались более высокой твердостью, по сравнению с контрольными плодами и  сохраняли ее на протяжении всего периода хранения — 9,4 и 8,2 кг/см2 соответственно (контроль – 6,6 и 4,3 кг/см2 соответственно), т.е. обработка усиливает положительное влияние РА на сохранение твердости плодов, тем не менее, высокий экзогенный этилен способствует ее снижению (Рис.3).

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность

Рисунок 3. Влияние условий хранения на изменение твердости плодов.

Таким образом, определяющее влияние на твердость плодов оказывает уровень содержания эндогенного этилена, существенному снижению твердости плодов способствовали условия регулируемой атмосферы с высоким уровнем экзогенного этилена и кислорода и условия обычной и регулируемой атмосферы с высоким содержанием кислорода. Послеуборочная обработка 1-МЦП в сочетании с хранением в условиях РА с ультранизким содержанием кислорода и повышенным — углекислого газа, способствовала надежному сохранению твердости как в условиях более низкого, так и повышенного содержания этилена, однако, в атмосфере с пониженным содержанием этилена она была выше.

В результате проведенных исследований было показано, что после четырех месяцев хранения твердость обработанных плодов в ОА сопоставима с контрольными плодами, хранившимися в 2-РА (6,5 и 7,0 кг/см2 соответственно).

Твердость плодов объективно отражает их товарные качества, потребительские свойства и, косвенным образом, степень зрелости (чем выше уровень эндогенного этилена и, следовательно, выше степень зрелости плодов, тем ниже их твердость).

Не установлено прямой связи между развитием загара и твердостью мякоти, при этом в плодах с высокой степенью развития заболевания твердость снижается.

Северный Синап. В целом, твердость плодов сорта Северный синап выше, чем у сорта Мартовское, на протяжении всего периода хранения данный показатель не снижался ниже 5 кг/см2. В результате проведенных исследований получены те же закономерности, что и на сорте Мартовское: максимальное сохранение твердости отмечено в вариантах 2-РА+МЦП, 3-РА+МЦП (9-10 кг/см2), минимальное  — 3-РА+ контроль, ОА+контроль, 1-РА +контроль (5-6 кг/см2).

Влияние условий хранения на накопление α-фарнезена, КТ281 в кутикуле кожицы плодов. Влияние α-фарнезена, КТ281 на качество плодов и развитие загара.

α-фарнезен – непредельный углеводород, окисление которого сопровождается накоплением коньюгированных триенов (КТ). Увеличение содержания КТ с максимумом поглощения 281 нм  до 8 и более нмоль/см2 свидетельствует о возрастающих рисках поражения плодов загаром.

Мартовское, α-фарнезен. Анализ гексановых экстрактов кутикулы кожицы плодов показывает, что во всех условиях хранения в  контрольных и обработанных 1-МЦП плодах содержание  α-фарнезена достигало максимальных значений в первый месяц хранения, различия лишь в уровне его накопления (Рисунок 4).

В результате проведенных исследований было установлено, что максимально высоким содержанием изучаемого показателя (74-83 нмоль/см2) выделились необработанные плоды, хранившиеся в обычной и регулируемой атмосфере, это: ОА+контроль, 1-РА+контроль, 2-РА+контроль, 3-РА+контроль и вариант 3-РА+МЦП, где даже в обработанных плодах условия РА с повышенным экзогенным этиленом вызвали активный синтез углеводорода. Указанные варианты отличались и наиболее резким снижением содержания α-фарнезена (что свидетельствует об активном окислении углеводорода): к четвертому месяцу хранения на 55-70%, к шестому – на 70-80% от первоначального уровня, составляя 14-24 нмоль/см2, что соответствовало 100% поражению необработанных плодов загаром через 7 суток хранения при Т= +18…22оС

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность

Рисунок 4. Влияние условий хранения на накопление α-фарнезена в кутикуле кожицы плодов.

Было показано, что послеуборочная обработка 1-МЦП ингибировала синтез α-фарнезена при всех условиях хранения, но с разной эффективностью, поэтому содержание углеводорода всегда ниже в обработанных партиях, по сравнению с контролем. Так, после месяца хранения содержание α-фарнезена в трех вариантах с послеуборочной обработкой плодов: 1-РА+МЦП, 2-РА+МЦП и ОА+МЦП было ниже на 30-50%, по сравнению с контрольными (74-83 нмоль/см2). К четвертому месяцу хранения, в обработанных плодах, хранившихся в условиях регулируемой атмосферы, также, как и в контрольных, было отмечено снижение содержания непредельного углеводорода, но менее интенсивное – на 30-40%, через 6,5 месяцев хранения – на 50% от первоначального уровня, составляя 18-28 нмоль/см2, потери от загара в этих партиях составляли 90, 7 и 0% соответственно. Как было показано, к концу хранения содержание α-фарнезена в контрольных и обработанных  плодах находилось приблизительно на одном уровне 14-28 нмоль/см2, а потери от загара в этих партиях составляли от 0 до 100%. т.е. потери от заболевания не находятся в прямой зависимости от содержания α-фарнезена, однако, чем выше уровень его накопления, тем выше вероятность его окисления и поражения плодов загаром.

Более низкий уровень накопления и спокойная динамика изменения содержания углеводорода в обработанных 1-МЦП плодах соответствовали их относительно более устойчивому состоянию, низкой (по сравнению с контрольными вариантами) восприимчивости к загару.

В результате многолетних исследований установлено, что в плодах, пораженных загаром содержание α-фарнезена может составлять 15, 30, 50 нмоль/см2. При максимальных значениях показателя (более 70 нмоль/см2), загар чаще всего не обнаруживается, а проявляется после его снижения. Вероятно, что нет прямой зависимости между уровнем содержания α-фарнезена и возникновением  загара, однако чем выше уровень накопления α-фарнезена, тем выше вероятность его окисления и поражения плодов заболеванием. Данные по уровню содержания и интенсивности снижения α-фарнезена могут быть рассмотрены в качестве дополнительных прогностических характеристик плода при оценке их восприимчивости к заболеванию. Очевидно, наряду с эндогенным этиленом и α-фарнезеном, участвуют в регулировании развития загара и другие эндогенные и экзогенные факторы.

Содержание α-фарнезена, вероятно, не влияет на товарное качество плодов.

КТ281. Содержание триенов (КТ281) увеличивалось по мере окисления α-фарнезена и появления загара, и снижалось в плодах с максимальной степенью развития заболевания, распадом тканей паренхимы. Логично, что максимальное содержание КТ281 после одного месяца хранения было отмечено в плодах вариантов, накопивших максимально высокое содержание α-фарнезена, это – 1-РА+контроль, 2-РА+контроль, 3-РА+контроль и ОА+контроль (19,7, 12,6, 12,0 и 10,4 нмоль/см2 соответственно) (Рисунок 4,5).

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность

Рисунок 5. Влияние условий хранения на накопление КТ281 в кутикуле кожицы плодов.

Высокие уровни триенов в кутикуле кожицы указывали на высокую предрасположенность плодов выделенных вариантов к загару. И, действительно, в варианте 1-РА+контроль, с максимальным содержанием КТ281 отмечено раннее появление загара: уже в 1 декаде ноября потери составили 30%, увеличиваясь в комнатных условиях до 60% (в других вариантах потери либо отсутствовали, либо не превышали 5%). К середине января два варианта, отличающиеся высоким уровнем содержания кислорода в атмосфере (1-РА+контроль и ОА+контроль) отреагировали на сложившиеся условия хранения  активным синтезом триена (36,7 и 39,6 нмоль/см2 соответственно), что совпадало с резким увеличением потерь от загара (90-100% в комнатных условиях), далее – очень резкое снижение его содержания, более выраженное в условиях 1-РА (рисунок 4), что соответствовало максимальной интенсивности загара, сопровождающееся распадом клеточных структур (твердость 4,7-4,8 кг/см2). Следует отметить, что при равно высоких уровнях накопления α-фарнезена и КТ281 в плодах вариантов 1-РА+контроль и ОА+контроль, в условиях ОА загар появляется позднее по срокам (на месяц), потери после четырех месяцев хранения на 50% ниже и степень проявления существенно ниже, чем в 1-РА. Вероятно, существенное влияние на развитие заболевания оказывают и другие эндогенные факторы, в том числе антиоксиданты (влияние антиоксидантов на развитие загара будет рассмотрено в соответствующем разделе статьи).

В результате многолетних исследований были получены неоспоримые доказательства того, что у многих  изучаемых сортов (Антоновка обыкновенная, Мартовское, Синап Орловский, Северный Синап, Богатырь) величина потерь и интенсивность развития загара в 1-РА всегда выше, чем при других условиях хранения.

Анализ большого массива данных показывает, что при содержании в кожице плодов КТ281 в пределах 10 нмоль/см2 (особенно в первые 1-2 месяца хранения) загара может еще и не быть. Вероятно, для определенных сортов и партий плодов, должен пройти некоторый период времени с момента обнаружения критических уровней содержания КТ281 до появления загара (возможно, анатомическая структура и биохимический состав кожицы влияет на сроки и степень поражения заболеванием), но уже тогда необходимо принимать решение о сроках реализации партии.

Послеуборочная обработка 1-МЦП во всех условиях хранения (1-РА, 2-РА, 3-РА, ОА) ингибировала накопление триенов (КТ281) в кожице плодов на 50-80%, по сравнению с контролем. Так, после месяца хранения содержание КТ281 в обработанных партиях не превышало 5 нмоль/см2, после 4 месяцев — 10 нмоль/см2, стабильно более низким содержанием КТ281 в течение всего периода хранения отличался вариант 2-РА+МЦП (3,5-6,9 нмоль/см2), что свидетельствовало об устойчивости плодов к загару.

В вариантах 2-РА+контроль, 3-РА+контроль содержание КТ281 было примерно на одном уровне: после одного месяца хранения — 12,6 и 12,0 нмоль/см2 соответственно, при дальнейшем хранении максимальное содержание показателя увеличилось — 14,9 и 18,6 нмоль/см2 соответственно. Полученные значения существенно ниже, чем в 1-РА и ОА, при этом потери от загара в вариантах 2-РА+контроль, 3-РА+контроль появились на 1,5-2 месяца позднее, чем в 1-РА, а уровень потерь от заболевания в рассматриваемых вариантах ниже, чем в 1-РА и ОА. Полученные экспериментальные данные еще раз подтверждают ингибирующее влияние ультранизкого содержания кислорода -1,2 % (2-РА, 3-РА) на накопление продуктов окисления α-фарнезена и развитие загара, по сравнению с хранением в условиях повышенного содержания О2 (ОА,1-РА).

В результате проведенных исследований выраженных различий по влиянию условий хранения 2-РА и 3-РА на накопление триенов и развитие загара контрольных и обработанных партий плодов – не обнаружено. Очевидно, этому есть логичное объяснение: при прочих равных условиях (температура, СО2, О2), хоть различия по содержанию экзогенного этилена и существуют (Рис. 1), однако, в обоих случаях, содержание этилена существенно превышало физиологически активные концентрации гормона (5 ppm), что позволило нам выявить лишь некоторые тенденции его влияния на состояние продукции. 

Для выявления роли экзогенного этилена на биохимические показатели и развитие загара плодов были проведены специальные исследования в условиях обычной и модифицированной атмосферы. По содержанию основных газов модифицированная атмосфера близка к условиям 1-РА (СО2 -3-9%, О2 -13-20%). Благодаря послеуборочной обработке ингибитором этилена удалось смоделировать атмосферу с низким содержанием экзогенного этилена — вариант МА+МЦП (в пакетах сорта Мартовское -1,8-4,8 ppm, Богатырь — 8-25 ppm). Высокий уровень содержания С2Н4  был получен при хранении в пакетах необработанных плодов — МА+контроль, МА-смесь (в пакетах сорта Мартовское – 107-286 ppm, Богатырь – 47-145 ppm). В условиях ОА содержание экзогенного этилена на протяжении всего периода хранения составляло 0,8-1,5 ppm (Рис. 6).

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность

Рис. 6. Содержание экзогенного этилена в различных условиях хранения.

В результате проведенных исследований еще раз подтверждено, что максимальной интенсивностью созревания и, следовательно, более низкой твердостью отличаются необработанные плоды в условиях ОА. В условиях МА, за счет повышенного содержания СО2 процесс созревания (накопления эндогенного этилена) сдерживается до момента, пока высокий экзогенный этилен в атмосфере пакета (107-286 ppm), активируя синтез эндогенного этилена, сведет к минимуму различия между вариантами. Так, через 3 месяца хранения плодов сорта Мартовское содержание эндогенного этилена в вариантах ОА+контроль (ОА+к), МА+контроль (МА+к), МА-смесь+контроль (МАсм+к) составляло 389,9, 214,4 и 223,7 ppm, твердость – 6,0, 6,7 и 6,8 кг/см2, через 4,5 месяца хранения содержание показателей изменилось следующим образом: содержание эндогенного этилена составило 450,0, 170,2 и 148,6 ppm, твердость — 5,1, 4,9 и 4,8 кг/см2 соответственно (Рис.7,8).

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность

Рисунок 7. Влияние условий хранения на накопление эндогенного этилена в плодах яблони.

Снижение содержания эндогенного этилена в плодах, а также низкие показатели твердости мякоти плодов после 4,5 месяцев хранения в МА свидетельствует о постклимактерическом этапе их жизни (периоде старения), очевидно, что интенсификация процессов созревания после 3 месяцев хранения, была вызвана высоким экзогенным этиленом.  Таким образом, условия МА для контрольных плодов обеспечивают некоторые преимущества по сохранению твердости и сокращению потерь массы на ограниченном временном промежутке (1-4 месяца, в зависимости от сорта и физиологического состояния), далее – различия сглаживаются. Вероятно, накопление эндогенного этилена (процесс созревания) обусловлено, прежде всего, его автокатализом, однако экзогенный этилен может стимулировать синтез эндогенного и наоборот, что ограничивает использование МА для хранения плодов.

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность

Рисунок 8. Влияние условий хранения на твердость и убыль массы плодов.

Как и в ранее рассмотренном опыте, максимальным содержанием КТ281 и высокой восприимчивостью к загару отличались контрольные плоды сорта Мартовское, хранившиеся в атмосфере с повышенным содержания кислорода и этилена. Так, через 3 месяца хранения в вариантах ОА+к, МА+к, МАсм+к содержание триена составляло 18,0, 28,3 и 26,4 нмоль/см2, потери от загара — 38,4, 75,6 и 80% соответственно. Т.е условия МА стимулировали накопление КТ281, повышали восприимчивость к загару. Учитывая, что уровень содержания кислорода в атмосфере ОА и МА находится на сопоставимо высоких уровнях (12-21%), в то время как физиологические проявления (подавление созревания) начинаются в плодах при снижении О2  до 7% и ниже, то, как показывают результаты наших исследований, существенным фактором, влияющим на содержание продуктов окисления α-фарнезена может быть уровень содержания экзогенного этилена. В нашем опыте  в условиях МА (плоды сорта Мартовское) уровень содержания гормона в 100 раз и более выше, чем в ОА – 255 и 1,5 ppm, содержание триенов – 28,2 и 18,0 нмоль/см2, потери от загара – 75,6 и 38,4% соответственно, интенсивность развития загара в МА также существенно выше, чем в ОА (Рис. 6,9,10). В ранее рассмотренном опыте (сорт Мартовское) различия по содержанию экзогенного этилена в атмосфере 1-РА и ОА менее выражены – в 4-6 раз, но по содержанию КТ281, потерям и интенсивности развития загара – существенны. Важную роль экзогенного этилена в развитии загара доказывает следующий пример, после 4,5 месяцев хранения контрольных плодов сорта Северный синап в ОА с низким (1,5 — 2,5 ppm) и высоким (50,0 – 200,0 ppm) уровнем экзогенного этилена (в камере), содержание КТ281 составляло 2,92 и 34,7 нмоль/см2, потери от загара — 0,2 и 100% соответственно. Аналогичные данные получены на сортах Антоновка обыкновенная, Мартовское.

При видимых различиях между вариантами МА+к, МАсм+к по содержанию экзогенного этилена они также не были существенны, как и между вариантами 2-РА и 3-РА. Это нашло свое отражение в близких значениях биохимических показателей, характеризующих состояние плодов и одинаково высокой восприимчивости этих партий к загару (Рис.7-10).

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность

Рисунок 9. Влияние условий хранения на накопление КТ281 в кутикуле кожицы плодов.

В результате проведенных исследований было показано, что послеуборочная обработка 1-МЦП обеспечивает эффективное ингибирование созревания плодов в условиях обычной (ОА+МЦП), модифицированной атмосферы с низким (МА+МЦП) и высоким содержанием экзогенного этилена (МАсм+МЦП). Так, через 3 месяца хранения плодов сорта Мартовское содержание эндогенного этилена составляло 44,7, 7,0 и 5,6 ppm, твердость – 7,8, 9,0 и 8,8 кг/см2 соответственно. После 4,5 месяцев хранения ситуация заметно изменилась: содержание эндогенного этилена увеличилось во всех вариантах, однако его наиболее активный синтез был вызван высоким экзогенным содержанием гормона — 160,8, 100,3 и 415,4 ppm, твердость плодов составила – 6,8, 8,1 и 6,4 кг/см2 соответственно. Т.е. условия МА (повышенный уровень СО2) в сочетании с обработкой 1-МЦП в течение 1-4 месяцев (в зависимости от сорта, исходного физиологического состояния и др.), могут обеспечивать ингибирование созревания и сохранение твердости, далее – различия сглаживаются, особенно в условиях высокого экзогенного этилена, что свидетельствует о нецелесообразности использования МА (даже в сочетании с 1-МЦП) для продолжительного хранения сортов, восприимчивых к загару. В то же время показано, что при низком содержании эндогенного и экзогенного этилена реально контролировать качество плодов (зрелость, твердость, загар), что может быть реализовано в рамках перспективной технологии ДРА[4-8]. Низкий уровень содержания кислорода — 0,4-0,6%, ингибирует синтез этилена в плодах (находящихся в предклимактерической стадии созревания) и атмосфере, синтез и окисление α-фарнезена и, следовательно, развитие загара. Однако наряду с преимуществами, технология ДРА имеет и недостатки, что ограничивает ее использование в мировой практике [4-8].

Заметным положительным проявлением 1-МЦП является сохранение одинаково высокой твердости плодов при низком и высоком содержании экзогенного этилена, однако это продолжается только до тех пор, пока удается ингибировать синтез эндогенного этилена.

Важным результатом исследований являются данные о том, что в кожице обработанных 1-МЦП плодов, хранившихся в атмосфере с низким уровнем экзогенного этилена (1,8-4,8 ppm) ниже содержание продуктов окисления α-фарнезена и выше устойчивость к загару, по сравнению с плодами, хранившимися в среде высоким содержанием гормона (124-286 ppm). Так, после двух месяцев хранения в плодах сорта Мартовское вариантов МА+МЦП и МАсм+МЦП  содержание КТ281 составляло – 9,5 и 14,7 нмоль/см2, потери от загара в условиях холода отсутствовали, через сутки в комнатных условиях составляли 0 и 60%, через 7 дней – 50 и 100% соответственно (Рис. 9, 10).

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность

Рисунок 10. Влияние условий хранения на потери от загара.

Вероятно, повышенное содержание этилена и, возможно, других мало летучих соединений в атмосфере, может стимулировать процессы, приводящие к накоплению триенов и повышению восприимчивости плодов к загару даже в обработанных 1-МЦП партиях. Вывод  подтверждают экспериментальные данные, полученные на плодах сорта Богатырь, хранившихся в условиях МА (Рис. 6-10), а также в РА с ультранизким содержанием кислорода. Так, из семи камер (150-170 т) с обработанными 1-МЦП плодами после 6,5  месяцев хранения  высокие потери от заболевания (27-37% — в камере и 95-100% — через 7 суток в комнатных условиях) были обнаружены в двух камерах, с высоким содержанием экзогенного этилена (81-169 ppm). В других камерах (экзогенный этилен до 10 ppm) – заболевание ни при хранении, ни при доведении до потребителя не проявлялось. Высокий уровень накопления этилена в камерах был связан с тем, что 75% объема камеры занимали плоды сортов Ветеран и Куликовское, отличающихся высокой интенсивностью выделения этилена, низкое содержание этилена поддерживалось при хранении одного сорта Богатырь, плоды которого были обработаны 1-МЦП.

Полученные данные подтверждают наши выводы о нецелесообразности хранения в одной камере плодов нескольких сортов и даже одного сорта, но с различной степенью зрелости. Для сохранения высокого качества плодов (вкус, твердость сочность отсутствие загара и др.) содержание этилена в плодах и атмосфере камеры необходимо поддерживать на уровне не более 5 ppm.

В результате исследований было доказано, что экзогенный этилен оказывает существенное влияние на качество плодов. Чем выше его содержание, тем выше содержание эндогенного этилена и выше степень зрелости плодов, особенно в условиях повышенного содержания кислорода. В стареющей продукции снижается содержание биологически активных веществ, твердость, повышается их восприимчивость к разложению, внутреннему побурению, грибной инфекции и др. То есть, чем выше содержание экзогенного этилена, тем выше содержание эндогенного этилена (и наоборот), тем ниже товарные и потребительские качества плодов. Экзогенный этилен способствует накоплению КТ281 и развитию загара. Установлено, что постоянное поддержание низкого уровня этилена (<1ppm) в камере с РА и внутри плода (0,1- 1,0 ppm) эффективно сдерживает биосинтез α-фарнезена и продуктов окисления и обеспечивает защиту плодов многих сортов от загара и других физиологических заболеваний, способствует сохранению твердости, сочности, вкусовых и товарных качеств[3,4,18,19].

Таким образом, условия хранения оказывают существенное влияние на накопление КТ281 в кутикуле кожицы плодов. Хранение плодов в среде с высоким содержанием кислорода (ОА, 1-РА, МА) – активирует накопление триенов. Высокий экзогенный этилен (возможно и другие летучие соединения) способствует накоплению КТ281 и развитию загара (1-РА, МА), чем выше его содержание, тем выше восприимчивость плодов к заболеванию. Сочетание высоких уровней экзогенного этилена и кислорода (1-РА, МА) приводит к ранним срокам появления и высоким уровням накопления КТ281, проявляющееся в побурении кожицы. Послеуборочная обработка плодов этих вариантов 1-МЦП на определенный период  времени (в зависимости от сорта) ингибирует накопление КТ281 и развитие загара. Ультранизкое содержание кислорода способствует ингибированию накопления и, особенно, окисления α-фарнезена (2-РА), в сочетании с послеуборочной обработкой 1-МЦП эффективность технологии заметно возрастает, т.к. синергетическое действие активных факторов позволяет в определенной степени ингибировать/контролировать фазы развития загара и, следовательно, увеличивать продолжительность хранения сортов с различной восприимчивостью к заболеванию.

Триены (КТ281) — токсичный продукт для клеток кожицы плодов. Его содержание напрямую влияет на развитие загара. Чем выше интенсивность, уровень и чем раньше сроки накопления КТ281, тем выше потери и интенсивность проявления загара на плодах.Однако, уровень содержания триенов, при котором признаки расстройства становятся очевидны, может заметно отличаться. Так, у сорта Моргендуфт загар появляется при содержании КТ281 8 нмоль/см2, у сортов  Мартовское, Гренни Смитт — при более высоком уровне (12-30 нмоль/см2), даже в пределах одного сорта при одном уровне триенов партии плодов могут проявлять различную восприимчивость к заболеванию. Очевидно, что наряду с продуктами окисления α-фарнезена, на развитие загара влияют и другие биохимические соединения кожицы плодов, содержание которых определяется генотипом сорта и комплексом экзогенных и эндогенных факторов.

КТ281. Северный Синап. Уровень накопления α-фарнезена у плодов зимнего сорта Северный Синап в целом существенно ниже, чем у  сорта Мартовское. Особенности сорта в сочетании с условиями хранения в 2-РА и послеуборочной обработкой 1-МЦП способствовали столь глубокому ингибированию синтеза α-фарнезена, что даже через 6,5 месяцев хранения его содержание не превышал 6,4 нмоль/см2.

Уровень накопления КТ281 , как и восприимчивость к загару, у плодов зимнего сорта Северный Синап в целом также существенно ниже, чем у  сорта Мартовское. Максимальным накоплением триенов отличались три варианта: 1-РА+контроль, 3-РА+контроль, ОА+контроль (10-16 нмоль/см2), более низкому уровню накопления способствовали условия 2-РА (6,7 нмоль/см2), где лишь к концу хранения содержание изучаемого показателя достигло  10,7 нмоль/см2.

Послеуборочная обработка во всех условиях хранения (1-РА, 2-РА, 3-РА, ОА) ингибировала накопление триенов (КТ281): до конца хранения (6,5 месяцев) содержание показателя не превышало 6 нмоль/см2, минимальным содержанием (менее 0,6 нмоль/см2 ) в течении всего периода хранения отличался вариант 2-РА+МЦП.

Влияние условий хранения на накопление антиоксидантов в кожице плодов.

Антиоксиданты – это соединения, способные блокировать вредное воздействие на организм свободных радикалов, защищать от заболеваний, старения. К одним из самых эффективных антиоксидантов относятся природные полифенолы, в том числе полифенолы плодов.

Рано снятые плоды отличаются низким содержанием антиоксидантов, у поздно снятых – содержание увеличивается (усиливается основная и покровная окраска, которая зависит в т.ч. от комплекса фенольных соединений), как и возрастает устойчивость к загару (рис. 11). То есть содержание антиоксидантов увеличивается при созревании плодов  на дереве и продолжается этот процесс — в начальный период хранения, что подтверждает роль эндогенного этилена в стимуляции синтеза антиоксидантов (в том числе фенольных соединений), после некоторого периода хранения их содержание снижается [11,19,20]. Существенное влияние на сохранение антиокислительного комплекса могут оказать условия хранения и послеуборочная обработка плодов 1-МЦП.

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективностьРисунок 11. Влияние содержания антиоксидантов (антоцианов) в кожице плодов сорта Мартовское на развитие загара.

Мартовское. В результате наших исследований было показано, что условия хранения, обеспечивающие максимальное ускорение созревания (максимальный уровень эндогенного этилена) стимулируют синтез и накопление антиоксидантов (в первые 6-8 недель хранения) – это условия ОА. Ультранизкое содержание О2 (1,2%), повышенный уровень СО2 (1,2%) и, послеуборочная обработка 1-МЦП заметно ингибируют эти процессы. Так, в вариантах ОА+к и ОА+МЦП суммарное содержание фенольных соединений (СФС) в кожице плодов после трех месяцев хранения составляло 1326,8, 1242, содержание рутина — 320, 241,8 мг/100г сыр.м. соответственно. В условиях РА эти показатели заметно ниже, в вариантах 2-РА+к и 2-РА+МЦП -1151,4, 1100 и 233, 190,1 мг/100г сыр.м. соответственно (Рис. 12).

Как мы неоднократно отмечали, условия 1-РА и МА стимулируют синтез эндогенного этилена, однако, это не приводит к увеличению содержания фенолов, а даже наоборот, способствует снижению их содержания. Вероятно, одной из причин этому — ингибирующее влияние повышенного содержания СО2 на синтез антиоксидантов. Кроме того, не исключена возможность, что фенолы кожицы плодов с первых недель хранения включаются в блокирование реакций свободно-радикального окисления α-фарнезена синтез и окисление которого провоцируют условия 1-РА и МА (высокий экзогенный этилен и кислород). В результате, через 3 месяца хранения содержание СФС и рутина в кожице плодов вариантов 1-РА+к и МА+к было на 30-60% ниже, чем в варианте ОА+к (Рис. 12,13). Послеуборочная обработка 1-МЦП в средах с высоким содержанием кислорода и этилена с одной стороны, ингибируя созревание сдерживала синтез не только фенолов, но и α-фарнезена и продуктов его окисления, защищая тем самым антиоксиданты от разрушения. Так, в кожице плодов вариантов 1-РА+МЦП и МА+МЦП  содержание СФС составляло 982,7, 1106,4, рутина — 176, 194,3 мг/100г сыр.м. соответственно (Рис. 12,13), что на 13-40% выше, чем в контрольных вариантах (1-РА+к, МА+к).

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность

Рисунок 12. Влияние условий хранения на содержание фенольных соединений в кожице плодов.

Содержание фенольных соединений в кожице резко снижается при появлении загара и увеличении интенсивности его развития, что наблюдается во всех условиях хранения. По времени это чаще всего совпадает с мощным синтезом КТ. Так, через 4,5 месяца хранения в вариантах ОА+к, 1-РА+к, 2-РА+к содержание СФС снизилось на 25, 40 и 21%, а содержание рутина – на 35, 76 и 30% соответственно, по сравнению с показателями, полученными после трех месяцев хранения. Потери от загара через 5 месяцев хранения составили 70, 100, 50% соответственно. Максимальное снижение антиоксидантов отмечено в условиях 1-РА, с максимальными потерями от загара.

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность

Рисунок 13. Влияние условий хранения на содержание фенольных соединений в кожице плодов.

Послеуборочная обработка 1-МЦП, сдерживая созревание и синтез фенолов, обеспечивает в какой-то степени сохранение антиоксидантов на протяжении всего периода хранения, за счет ингибирования синтеза и окисления α-фарнезена. Вероятно, по этой причине в вариантах ОА+МЦП и 2-РА+МЦП содержание СФС и рутина после трех и пяти месяцев хранения изменились незначительно, а плоды проявляли устойчивость к загару. В условиях 1-РА даже в обработанных плодах содержание антиоксидантов снизилось на 21, 35% соответственно, а плоды повреждались загаром.

Аналогичные результаты были получены на сорте Мартовское в опыте с ОА и МА (Рис. 13 ).

Таким образом, процессы созревания стимулируют синтез антиоксидантов. В максимальной степени полифенолы накапливаются в условиях ОА, где накопление эндогенного этилена ингибируется только пониженной температурой. Повышенный уровень содержания СО2 (1,2%) и ультранизкое содержание О2, послеуборочная обработка 1-МЦП заметно ингибируют накопление антиоксидантов. Высокий уровень содержания α-фарнезена и продуктов его окисления в кутикуле кожицы плодов приводят к резкому снижению содержания фенолов и высоким потерям от загара.

На основе анализа литературных данных, результатов проведенных исследований установлено прямое влияние антиоксидантов на развитие поверхностного загара плодов яблони[19-23], что подтверждают и следующие примеры. При поздних сроках съема и накоплении естественных антиоксидантов плоды характеризуются низким содержанием триенов (но не α-фарнезена и продуктов его окисления) и высокой устойчивостью к загару, по сравнению с плодами, собранными в ранние сроки, с экстенсивных насаждений, где недостаточный и неравномерный световой режим сдерживает накопление антиоксидантов. Хранение плодов с исходно низким содержанием антиоксидантов, в условиях, сдерживающих их биосинтез (ультранизкое содержание кислорода, повышенный уровень углекислого газа) – резко повышает потери от загара. В этом случае, послеуборочная обработка 1-МЦП, также ингибирующая синтез антиоксидантов, является для плодов дополнительным стрессором, в результате которого она  может оказаться малоэффективной и даже усилить развитие заболевания. Такие факты имели место при хранении в 2-РА плодов сортов Антоновка обыкновенная, Мартовское и Богатырь, снятых в очень ранние сроки (14.08, 17.08 и 19.08 соответственно), через три месяца хранения потери от загара составляли в контрольных партиях 70, 80 и 50%, в обработанных — . 90, 95 и 70% соответственно.

Неоспоримым доказательством определяющей роли антиоксидантов в развитии загара является послеуборочная обработка плодов искусственными антиоксидантами (сантохин, ионол, этоксихин) существенно снижающими потери от заболевания [11,20,21,23]. Искусственные антиоксиданты не ингибируют созревание и синтез α-фарнезена, а сдерживают  накопления КТ281, предохраняя плоды от повреждений. Следует отметить, что партии плодов одного сорта с близким содержанием антиоксидантов могут проявлять различную восприимчивость к заболеванию, что зависит от содержания в кутикуле кожицы КТ281 и, возможно, комплекса других эндогенных и экзогенных факторов. 

Влияние условий хранения на качество плодов, потери от загара.

Качество плодов определяется различными показателями, которые всесторонне характеризуют свойства, потребительскую ценность и их назначение (калибр, форма, окраска, аромат, вкус, свежесть, состояние зрелости, лежкоспособность, дефекты кожицы и мякоти и др.). Основные потери при хранении плодов сорта Мартовское составляют потери от загара (до 100%), в меньшей степени восприимчивы к этому заболеванию плоды сорта Северный Синап. Повреждения, вызванные загаром, существенно сокращают сроки хранения, снижают товарные качества и цену реализации продукции (Рис. 14).

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективностьРис. 14. Загар на плодах сорта Мартовское. РА без обработки 1-МЦП, 5 месяцев хранения.

Появление загара на плодах яблони связывают с рядом последовательных реакций, которые начинаются при созревании плодов в предуборочный период с синтеза в кожице a — фарнезена и заканчиваются в период хранения гибелью эпителиальных клеток, что проявляется в виде внешних признаков этого заболевания – побурения кожицы.

В соответствии с существующей теорией имеется несколько условных фаз развития загара [24,25]. Первая фаза протекает в течение первых 1-2 месяцев после уборки и сопровождается накоплением a — фарнезена в кутикуле кожицы плодов. Наличие в камере хранения этилена усиливает эту реакцию (условия 1-РА, МА, 3-РА  и в меньшей степени 2-РА).

Вторая фаза развития загара характеризуется снижением уровня α-фарнезена, вследствие его самоокисления, и повышением уровня коньюгированных триенов (перекисных радикалов), которые обладают высокой химической активностью и способны дезактивировать белки, окислить липиды мембран, образуя полимеры и нарушая функционирование органелл в клетке. Окисление фарнезена в коньюгированные триены, требует определенного уровня кислорода (условия ОА, 1-РА, МА, и в меньшей степени 2-РА и 3-РА). Этот период продолжается обычно около 1-2 месяцев без каких-либо заметных внешних проявлений.

Третья стадия начинается, когда повреждения ткани становятся достаточными, чтобы вызвать побурение.  Это как раз тот период, когда проявляется защитное действие от обработок антиоксидантами.

Таким образом, необходимыми условиями ингибирования загара в период хранения являются: низкий уровень эндогенного и экзогенного этилена (менее 1-2 ppm) и ультранизкое содержание кислорода. В связи с этим, значительный интерес представляет технология хранения плодов в динамичной регулируемой атмосфере (ДРА), с содержанием кислорода – 0,4-0,6%, в таких условиях ингибируется развитие загара, обеспечивается сохранение высокого качества плодов многих сортов, однако и эта технология имеет недостатки, что ограничивает ее использование [5-8,18,31-33]. Коррекция содержания кислорода в ДРА осуществляется по принципу обратной связи с состоянием продукции, которое отслеживается по флуоресценции хлорофилла, концентрации газообразного этанола, коэффициенту дыхания и другим показателям [8,31-37]. По данным зарубежных исследователей технология с ультранизким содержанием кислорода (0,8-1,5%) в сочетании с послеуборочной обработкой плодов 1-МЦП по эффективности равнозначна ДРА [5,6]. В настоящий период разрабатываются, осваиваются и другие технологии хранения плодов. Эффективным технологическим приемом в защите плодов от загара является снижение содержание кислорода в камере с РА до 0,7-0,8% [5,6,18,26,27,28]. Система хранения плодов SWINGLOS® также обеспечивает защиту от заболевания, суть ее заключается в том, что в первые две недели хранения содержание кислорода в камере поддерживается на уровне 0,25-0,5%, т.е. плоды подвергаются кислородному стрессу (IhOS). В дальнейшем уровень кислорода поддерживается в пределах 1,2-1,5%. Предполагается, что низкокислородный стресс способствует образованию этанола, который может сдерживать окисление a — фарнезена, образование триенов и поражение клеточных структур [22,27,29]. Рассеивание паров этанола в воздухе холодильной камеры в сочетании с хранением в РА также может способствовать  снижению потерь от загара для некоторых сортов яблони [27]. Обработка перед хранением плодов эмульсиями очищенного кукурузного масла ингибировала развитие загара у некоторых сортов яблони и груши. Более низкое содержание α-фарнезена в обработанных плодах видимо связано с его поглощением маслянистыми веществами на поверхности кожицы, а положительное действие на сохранение твердости, зеленой окраски, кислот – с модифицированной внутренней атмосферой, вызванной масляным покрытием [19,30]. Однако, каждая технология имеет свои преимущества и недостатки [4-8,18,19,22,26-37], поэтому необходимо сравнительными испытаниями установить для каких сортов и какого качества плодов, сроков хранения, наличия материально-технической базы, квалификации кадров и для каких сегментов рынка использовать указанные технологии хранения плодов. В одном хозяйстве могут использоваться несколько технологий.

По современным представлениям, поражение плодов загаром определяется своеобразным балансом между уровнем накопления в кутикуле кожицы антиоксидантов (фенольных соединений и др.) и коньюгированных триенов (антиоксиданты/КТ281), чем ниже это соотношение, тем выше вероятность появления загара [4,18,19,20]. Вероятно, в соответствии с предложенной формулой, заболевание появляется в следующих случаях: при изначально низких запасах естественных антиоксидантов (ранний срок съема, ингибирующее воздействие погодных и агротехнических факторов), либо когда они резко снижаются при хранении (на погашение реакций свободно-радикального окисления); при изначально высоком содержании α-фарнезена и триенов (при съеме плодов), что может быть спровоцировано стрессовыми агротехническими (обрезка, удобрения и др.) и погодными условиями (температура, осадки, солнечная активность и др.) при формировании плодов, либо активацией их синтеза в процессе хранения. При одновременном неблагоприятном сочетании факторов, приводящих к снижению индекса антиоксиданты/КТ281, время появления загара сокращается, а его интенсивность усиливается. Отсутствие данных по содержанию антиоксидантов в кожице плодов снижает точность прогноза, но при любом сочетании факторов хранения и содержании КТ281≥ 10 нмоль/см2 (у восприимчивых к загару сортов) риски поражения плодов заболеванием при хранении и доведении до потребителя очень высоки.

В настоящее время наиболее надежным средством защиты, либо существенного сокращения потерь от загара является послеуборочная обработка плодов ингибитором биосинтеза этилена. При этом, как показывают результаты исследований, условия хранения могут настолько серьезно повлиять на лежкоспособность и увеличить восприимчивость плодов к загару, что даже обработка 1-МЦП может оказаться малоэффективной, а хранение необработанных плодов изначально – не целесообразно.

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективностьРис. 15. Влияние условий хранения на поражение плодов сорта Мартовское загаром. 5 месяцев хранения.

Мартовское. 1-РА. В результате проведенных исследований было доказано, что хранение плодов в 1-РА (среды с высоким содержанием кислорода (16-18%) и повышенным содержанием углекислого газа (3-4%), повышенным содержанием экзогенного этилена (38-78 ppm)) не дает абсолютно никаких преимуществ по сохранению качества продукции (вкус, сочность, твердость и др.), но увеличивает потери от загара, даже по сравнению с ОА (рис.15,16). Очевидно, что сочетание активных факторов в 1-РА (высокий этилен, кислород) вызывают биохимические изменения в плодах, приводящие к развитию загара.

биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность биохим, качество плодов, модифицированная атмосфера, обрезка, регулируемая атмосфера, садоводство, сорта яблони, технология, технология хранения, химический состав, этилен, эффективность

Рисунок 16. Влияние условий хранения на потери от загара.

Послеуборочная обработка 1-МЦП в условиях 1-РА также не гарантирует защиту от заболевания. Как мы уже отмечали, в таких условиях хранения (1-РА, МА) много стрессовых факторов, приводящих к разбалансировке гомеостаза. Повышенный уровень СО2 в определенной мере ингибирует созревание (что должно обеспечивать сохранение твердости) и синтез фенолов, но повышенный экзогенный этилен стимулирует созревание и снижение твердости, способствует накоплению α-фарнезена и триенов. Высокий уровень содержания кислорода в среде обеспечивает свободное окисление α-фарнезена. Резкие изменения статуса плодов отразились в биохимических показателях и соотношениях, характеризующих восприимчивость к загару. Индексы загара — СФС/КТ281 и рутин/ КТ281 в варианте 1-РА+контроль через три месяца хранения были минимальными и составляли 45,4 и 7,0 соответственно (что в несколько раз меньше, чем в вариантах ОА+к и 2-РА+к) (Таблица 3). Низким индексам соответствовало раннее появлению загара на необработанных плодах (1 декада ноября – 30%), при доведении до потребителя (7 дней хранения при Т=+20-220С) потери от заболевания составили 60%, в условиях ОА – потери на тот период не обнаружены. Вариант 1-РА+контроль отличался максимальной интенсивностью и 100% поражением плодов загаром уже после трех месяцев хранения. Универсальные свойства послеуборочной обработки  1-МЦП (ингибирование эндогенного этилена, α-фарнезена, продуктов его окисления, ингибирование синтеза антиоксидантов) проявились в 5-кратном увеличении соотношений СФС/КТ281 и рутин/ КТ281 (200,6 и 35,9 соответственно), по сравнению с необработанными плодами, что обеспечивало защиту от загара в течение трех месяцев хранения. В дальнейшем — ингибирующий эффект обработки и антиоксидантная составляющая плодов не обеспечили нейтрализацию свободно-радикального окисления α-фарнезена, индексы загара снизились до 80,1 и 12,2 соответственно, после 4 месяцев хранения 30% плодов варианта 1-РА+МЦП поражались загаром при доведении до потребителя. Дегустационная оценка контрольных и обработанных плодов после 4 месяцев хранения составляла – 1,0 и 2,5 балла, твердость -5,5 и 7,1 кг/см2 , потери от загара при хранении 100 и 0%, при доведении до потребителя – 100 и 30% соответственно.

Таблица 3. Влияние условий хранения, послеуборочной обработки 1-МЦП на индексы загара. Мартовское. 

ОА+контроль 127,6 25,1 30,8 5,2
ОА+МЦП 1035,5 147,3 201,5 23,1
1-РА+контроль 45,4 14,5 7,0 0,9
1-РА+МЦП 200,6 80,1 35,9 12,2
2-РА+контроль 91,4 60,8 18,5 10,9
2-РА+МЦП 314,3 162,5 54,3 29,0

МА. По содержанию основных газов модифицированная атмосфера близка к условиям 1-РА (СО2 -3-9%, О2 -13-20%). Ответная реакция необработанных плодов варианта МА+к на стрессовые условия хранения аналогична варианту 1-РА+к. Вероятно, сформировавшееся сочетание компонентов газовой среды (высокий уровень СО2) способствовало ингибированию накопления антиоксидантов в кожице плодов, высокий экзогенный этилен стимулировал синтез, а кислорода —  окисление α-фарнезена, избыток свободных радикалов вызвал поражение клеток, проявившееся в побурении кожицы. Индексы загара — СФС/КТ281 и рутин/ КТ281 в варианте МА+контроль через три месяца хранения были минимальными и составляли 28,6 и 6,2 соответственно (что в несколько раз меньше, чем в вариантах ОА+к), а потери от загара – максимальными (рисунок 10, таблица 4).

Следует отметить, что в условиях 1-РА и МА плоды, пораженные загаром, существенно отличаются от плодов, пораженных этим заболеванием, но хранившихся в других условиях регулируемой и обычной атмосферы (условия 2-РА, 3-РА и ОА) высокой интенсивностью побурения, глубиной проникновения в подкожные слои. Вероятно, усилению  заболевания способствует комплексное влияние факторов: высокое содержание кислорода (16-18%) и  углекислого газа (1-РА — 3-4%, МА – 3-9%), высокий уровень содержания экзогенного этилена (1-РА – до 78, МА – до 280 и более ppm). Кроме того, в атмосфере с высоким содержанием этилена, что чаще всего бывает при недостаточной вентиляции/воздухообмене (условия 1-РА, МА и др.), могут присутствовать мало летучие соединения, выделяющиеся плодами в процессе их жизнедеятельности и стимулирующие развитие загара. Было отмечено, что при высоком содержании кислорода, чем выше содержание в атмосфере камеры этилена и СО2, тем раньше сроки появления и выше степень проявления загара.

Таблица 4. Влияние условий хранения, послеуборочной обработки 1-МЦП на индексы загара. Мартовское. 3 месяца хранения.

ОА+контроль 72,7 19,0
ОА+МЦП 214,0 46,8
МА+контроль 28,6 6,2
МА+МЦП 116,5 20,5
МАсмесь+контроль 30,8 6,9
МАсмесь+МЦП 75,7 13,6

Таким образом, условия 1-РА и МА отличаются от других, рассмотренных нами условий хранения, сочетанием факторов, одновременно воздействующих и негативно влияющих на качество плодов, стимулирующих процессы, проходящие в два условных этапа развития загара. Полученные данные свидетельствуют о нецелесообразности хранения необработанных партий плодов в условиях 1-РА, МА.

Послеуборочная обработка 1-МЦП сглаживает воздействие максимально сложных условий хранения в МА, при этом на результаты хранения заметное влияние оказывает содержание экзогенного этилена в атмосфере. Индексы загара в варианте с низким экзогенным этиленом (МА+МЦП) заметно выше, чем в варианте с высоким его содержанием (МАсм+МЦП) (Таблица 4). Через три месяца хранения соотношение СФС/КТ281составляло 116,5 и 75,7, рутин/ КТ281 -20,5 и 13,6, потери от заболевания при хранении – 0 и 0%, после суток хранения при Т+20..220 С  — 0 и 80%, после 7 суток – 50 и 100% соответственно. При дальнейшем хранении процессы созревания активизируются, экзогенный этилен и, возможно, другие мало летучие соединения стимулируют синтез α-фарнезена, триенов, что сглаживает различия между вариантами, резко увеличивает восприимчивость плодов к загару.

Полученные данные еще раз доказывают, что для эффективного хранения плодов уровень экзогенного этилена не должен превышать 2-5 ppm, что возможно при низком эндогенном содержании гормона.

Дегустационная оценка контрольных и обработанных плодов после 3 месяцев хранения в МА составляла – 1,0 и 4,5 балла, твердость -6,7 и 9,0 кг/см2 , потери от загара при хранении 75,6 и 0%, при доведении до потребителя – 100 и 50% соответственно.

2-РА. Эффективное хранение плодов обеспечивается в РА с ультранизким содержанием кислорода (2-РА). Ингибирование эндогенного этилена (созревания) и, следовательно, сохранение твердости обеспечивается низким содержанием О2 (1,2%) и повышенным СО2 (1,2%), эти же факторы прямым либо косвенным образом сдерживают синтез и окисление α-фарнезена (2 фаза развития загара) накопление триенов и сдерживают синтез фенолов, что снижает антиокислительный потенциал плодов. В результате, через три месяца хранения, соотношения СФС/КТ281 и рутин/ КТ281 в варианте 2-РА+контроль составляли 91,4 и 18,5 соответственно. То есть индексы загара примерно в два раза выше, чем в варианте 1-РА+к, но в 1,4-1,7 раза ниже, чем в варианте ОА+к. В соответствии с этим,  потери от загара были ниже, чем в 1-РА, но выше, чем в ОА. Послеуборочная обработка 1-МЦП усиливает преимущества хранения в 2-РА (более глубокое ингибирование созревания, надежное сохранение твердости) и нивелирует недостатки этой технологии сдерживая синтез α-фарнезена, триенов, что обеспечивает сохранение антиоксидантов и компенсирует одно из свойств обработки 1-МЦП — ингибирование их синтеза. В результате индексы загара — СФС/КТ281 и рутин/ КТ281 в варианте 2-РА+МЦП составляли 314,3 и 54,3 соответственно (Таблица 3), что в три раза выше, по сравнению с контролем и соответствовало устойчивому состоянию плодов, отсутствию загара. Дегустационная оценка контрольных и обработанных плодов после 4 месяцев хранения составляла – 3,0 и 4,5 балла, твердость -7,1 и 9,3 кг/см2 , потери от загара при хранении — 30 и 0%, при доведении до потребителя – 60 и 0% соответственно.

Следует отметить, что при хранении сорта Мартовское (и других сортов с высокой восприимчивостью к загару) в условиях РА (с ультранизким содержанием кислорода)  риски поражения плодов загаром велики. Они усиливаются при нарушении сроков съема, загрузки камер, обработки препаратом Фитомаг®, выхода камер на режим хранения, отклонения от рекомендуемых параметров хранения, увеличения содержания экзогенного этилена, особенно в первые месяцы хранения (что стимулирует 1 фазу развития загара),  увеличение сроков хранения и др..

3-РА. Условия 3-РА  отличаются от 2-РА более высоким содержанием экзогенного этилена. Повышенное содержание гормона в атмосфере стимулирует созревание и старение плодов, проявляющееся в снижении твердости, накоплении фарнезена и продуктов его окисления, повышении восприимчивости к загару. Дегустационная оценка контрольных и обработанных плодов после 4 месяцев хранения составляла – 2,5 и 4,5 балла, твердость — 4,8 и 8,9 кг/см2 , потери от загара при хранении — 35 и 0%, при доведении до потребителя – 60 и 5% соответственно.

ОА. В условиях ОА единственный фактор хранения — пониженная температура ингибирует интенсивность дыхания и скорость созревания плодов.

Период послеуборочного дозревания в условиях ОА составляет 1,5-3 месяца (в зависимости от сорта, исходного физиологического состояния и др.). В дальнейшем — плоды резко теряют товарные и вкусовые качества (твердость, сочность и др.), а их восприимчивость к физиологическим и микробиологическим заболеваниям существенно возрастает.

Вероятно, в условиях ОА при невысоком содержании экзогенного этилена (0,7 — 3,5 ppm и более), физиологическое состояние необработанных плодов, в первую очередь обусловлено содержанием эндогенного этилена, который стимулирует свое собственное образование, накопление антиоксидантов (в первые недели хранения), стимулирует процессы распада клеточных структур и снижение твердости, стимулирует накопление α-фарнезена. А вот образование продуктов его окисления в кутикуле кожицы зависит, в том числе, и от содержания антиоксидантов. Индексы загара — СФС/КТ281 и рутин/ КТ281 в варианте ОА+контроль через три месяца хранения составляли 127,6 и 30,8 соответственно, что значительно выше, чем в необработанных плодах, хранившихся в 2-РА (91,4 и 18,5), 1-РА (45,4 и 7,0 соответственно). Потери от загара в вышеотмеченных вариантах составляли 7,0, 3,0 и 90% соответственно.

После 4 месяцев хранения резкое увеличение содержания КТ281 обусловлено снижением антиокислительного потенциала кутикулы кожицы плодов (антиоксиданты расходуются в результате окислительно-восстановительных реакций). Индексы загара — СФС/КТ281 и рутин/ КТ281 снизились до 25,1 и 5,2 соответственно и, как следствие – 90% плодов после 7 дней хранения в комнатных условиях было поражено загаром.

Послеуборочная обработка 1-МЦП в условиях ОА ингибирует синтез этилена, α-фарнезена, триенов, а также фенолов, но в меньшей степени, чем в РА  (в дальнейшем — обеспечивая их сохранение), обеспечивает сохранение твердости, а условия ОА стимулируя синтез эндогенного этилена (созревание) стимулируют синтез антиоксидантов и распад клеточных структур, стимулирует синтез α-фарнезена, триенов. В результате такого баланса, обработанные 1-МЦП плоды в течение 3-4,5 месяцев отличаются высокими товарными качествами (твердостью), устойчивостью к загару. Максимальные значения соотношений — СФС/КТ281 и рутин/ КТ281 через три месяца хранения были отмечены именно в варианте ОА+МЦП – 1035,5 и 201,5 соответственно, что в 6-8 раз выше, по сравнению с контролем. Плоды при этом проявляли устойчивость к загару, как при хранении, так и при доведении до потребителя. После четырех месяцев хранения индексы загара заметно снизились (147,3 и 23,1 соответственно), однако оставались на высоком уровне, а плоды не поражались загаром.

Дегустационная оценка контрольных и обработанных плодов после 4 месяцев хранения составляла – 2,0 и 4,3 балла, твердость -5,3 и 6,5 кг/см2 , потери от загара при хранении — 50 и 0%, при доведении до потребителя – 90 и 0% соответственно.

Хранение плодов сорта Мартовское в условиях ОА+Фитомаг® в течение 4-4,5 месяцев считаем наиболее надежным и экономически целесообразным, т.к. их качество равнозначно плодам, хранившимся в РА, технология дешевле и доступнее для производителей, а риск развития загара меньше.

Как мы уже отмечали, высокий уровень экзогенного этилена в камере с ОА (40-170 ppm) может вызвать развитие загара не только у восприимчивых к нему сортов Антоновка обыкновенная, Мартовское, но и у менее восприимчивых – Синап Северный, Богатырь как у контрольных, так и у обработанных 1-МЦП партий. В связи с этим, в ОА необходимо постоянно осуществлять контроль за содержанием экзогенного этилена, снижая его до минимально возможного уровня (проветривание, вентиляция).

Таким образом, стимулируют появление загара все факторы хранения, стимулирующие накопление КТ281, это – высокий уровень содержания кислорода, экзогенного этилена, а также факторы, ингибирующие синтез антиоксидантов — низкий уровень кислорода, высокий уровень содержания углекислого газа, которые, в свою очередь, ингибируя созревание, способствуют сохранению качества плодов. Несбалансированное сочетание факторов хранения может усилить потери от заболевания.

Послеуборочная обработка 1-МЦП сглаживает, в течение определенного периода, воздействие негативных для сохранения качества плодов, факторов хранения (в т.ч. высокий уровень кислорода, экзогенного этилена), обеспечивая устойчивость, либо существенное снижение потерь от загара.

Риски поражения плодов загаром многократно увеличиваются при съеме плодов в ранние сроки, с интенсивно растущих, молодых, малоурожайных, сильно обрезанных деревьев, из насаждений экстенсивного типа [4,11]. Отличительные особенности таких плодов — низкий уровень содержания кальция (кальций обеспечивает сохранение клеточных структур, противодействует влиянию стресс-факторов) и дисбаланс других элементов минерального состава [12-14], низкий антиокислительный потенциал, высокий уровень накопления непредельных углеводородов, окисление которых вызывает развитие заболевания. Создание и поддержание условий, способных обеспечивать оптимальный минеральный, гормональный и антиоксидантный статус плодов возможно в садах интенсивного типа с максимально управляемыми факторами (световой, водно-воздушный режим, минеральный и гормональный баланс).

Северный Синап. У плодов сорта Северный Синап сроки поражения плодов загаром намного позднее, а величина потерь – ниже, чем у сорта Мартовское (Рис. 16). Так, после трех месяцев хранения потери от загара у плодов зимнего сорта Северный Синап при всех условиях хранения – отсутствовали. После четырех месяцев хранения заболевание проявилось, как и у сорта Мартовское, сначала в варианте 1-РА+ контроль (при хранении — 10%, при доведении до потребителя — 50%), в вариантах 2-РА+контроль и ОА+контроль – лишь при доведении до потребителя (5-10%). После 6 месяцев вся партия плодов, хранившаяся в условиях 1-РА, состояла из бурых, пораженных загаром, непригодных для потребления плодов, существенные потери были отмечены также в условиях ОА (40% при хранении, 70% — при доведении до потребителя), 2-РА (10% при хранении, 25% — при доведении до потребителя). В условиях 3-РА потери от заболевания отсутствовали.

Послеуборочная обработка ингибитором биосинтеза этилена обеспечила полную защиту плодов от загара после шести месяцев  хранения в условиях ОА, 2-РА, 3-РА. Условия 1-РА, даже у обработанных плодов спровоцировали развитие заболевания (5% при хранении, 10% — при доведении до потребителя, степень поражения — слабая).

Для экономически обоснованного применения послеуборочной обработки плодов ингибитором биосинтеза этилена в различных условиях хранения, на базе результатов биохимических исследований, оценке товарного качества (твердость, свежесть, сочность, внешний вид), дегустационной оценке, данных о потерях от загара, определены сроки хранения плодов, реализующие максимальный биологический потенциал изучаемых сортов (таблица 5).

В результате комплексных исследований было установлено, что гарантированно высокое сохранение качества (достаточно высокая твердость, высокая дегустационная оценка, отсутствие загара) плодов сорта Мартовское (и других сортов с высокой восприимчивостью к загару) в течении 4-5 месяцев обеспечивалось при хранении в условиях ОА+МЦП, хранение в условиях регулируемой атмосферы, даже  в сочетании с послеуборочной обработкой 1-МЦП связано с определенными рисками (варианты 2-РА+МЦП и 3-РА+МЦП), которые могут быть оправданы лишь при постоянном мониторинге состояния продукции. Хранение в условиях 1-РА+МЦП – не целесообразно из-за высоких рисков поражения плодов загаром.

Таблица 5. Рекомендуемые сроки хранения плодов, месяцы.

ОА
2 -21%, СО2 -0,03%; С2Н4 –5-14,5 ppm)
1,5-2,0 5-6 4 6-7
1-РА
2 — 16-18%, СО2 -3-4%; С2Н4 – 38-78 ppm)
не рекомендуется не рекомендуется не рекомендуется 5-6*
2-РА
(СО2 -1,2%; О2 -1,2%, С2Н4 – 10-40 ppm)
не рекомендуется 7-8 не рекомендуется 8-9
3-РА
(СО2 -1,2%; О2 -1,2%, С2Н4 – 45-133 ppm)
не рекомендуется 4 не рекомендуется 5-7

* — велики риски поражения плодов загаром.

Максимально высокое сохранение качества плодов сорта Северный синап в течение 5-9 месяцев хранения (высокая твердость, отсутствие загара) обеспечивалось при хранении в условиях 2-РА и 3-РА в сочетании с послеуборочной обработкой 1-МЦП, далее — ОА+МЦП и 1-РА+МЦП.

Из-за высоких рисков поражения загаром хранение необработанных плодов сорта Мартовское (и других сортов с высокой восприимчивостью к загару) более двух месяцев в условиях ОА и, особенно, в РА – не целесообразно. Возможно хранение необработанных плодов сорта Северный Синап (и других сортов с не высокой восприимчивостью к загару) в условиях ОА и РА до 4 месяцев при постоянном мониторинге состояния продукции, при увеличении сроков хранения риски побурения кожицы возрастают.

Из-за определенного увеличения стоимости продукции в условиях регулируемой атмосферы ее хранение менее 3-4 месяцев малорентабельно, следовательно, хранить в условиях РА плоды, необработанные ингибитором биосинтеза этилена не целесообразно (Таблица 5).

ВЫВОДЫ

1. Восприимчивость плодов к загару определяется генотипом сорта, комплексом экологических и агротехнических факторов выращивания, сроков съема, оказывающих влияние на минеральный, гормональный и антиоксидантный статус плода, факторов и сроков хранения, их сочетания.

2. Устойчивость плодов к загару зависит от уровня накопления в кутикуле кожицы плодов триенов (КТ281), содержания антиоксидантов, соотношения антиоксиданты/КТ281. Чем выше интенсивность, уровень и чем раньше сроки накопления КТ281, тем больше вероятность раннего проявления загара, чем выше индексы СФС/КТ281 и рутин/ КТ281, тем устойчивее плоды к заболеванию. Важными составляющими для мониторинга развития загара могут быть данные по содержанию эндогенного и экзогенного этилена, темпам и уровню накопления α-фарнезена в кожице плодов.

3. Биосинтез непредельного углеводорода α-фарнезена, коньюгированных триенов, антиоксидантов в значительной мере зависит от содержания кислорода, эндогенного этилена в плодах и экзогенного – в камере хранения.

4. Подтверждена двойственная роль этилена в развитии загара. С одной стороны он стимулирует биосинтез α-фарнезена, предшественника триенов, вызывающих развитие загара, с другой – стимулирует синтез антиоксидантов, сдерживающих его развитие. Потери от загара зависят от соотношения антиоксиданты/КТ281.

4. Кислороду принадлежит ведущая роль в ингибировании накопления α-фарнезена и особенно в процессах его окисления в коньюгированные триены. Поддержание минимально допустимых для каждого сорта концентраций О2 (не вызывающих низко-кислородных повреждений плодов) позволит в максимальной степени ингибировать/контролировать развития загара.

5. Экзогенный и эндогенный этилен, очевидно, стимулируют процессы, инициирующие синтез α-фарнезена. Постоянное поддержание низкого уровня этилена (<5ppm) в камере с РА и внутри плода эффективно сдерживает биосинтез α-фарнезена и продуктов его окисления и обеспечивает защиту плодов многих сортов от загара.

6. Обработка плодов 1-МЦП при всех рассмотренных технологиях хранения ингибирует биосинтез этилена, α-фарнезена и продуктов окисления, сдерживает развитие загара. В наибольшей мере плоды сортов Мартовское и Северный Синап поражались загаром в условиях повышенного уровня О2, высокого эндогенного и экзогенного этилена (1-РА, МА), в наименьшей – при ультранизком содержании О2, умеренном содержании эндогенного и экзогенного этилена в сочетании с обработкой 1-МЦП (2-РА+МЦП).

7. При хранении необходимо тщательно контролировать состав атмосферы в камере – содержание О2,  СО2, С2Н4, так как при отклонении от рекомендуемых параметров возможны внутренние и внешние повреждения плодов.

8. Установлено прямое влияние уровня содержания эндогенного этилена и твердости на товарное качество плодов (вкус, свежесть, консистенция мякоти и др). Условия хранения: низкий уровень содержания кислорода, повышенный – углекислого газа, низкий уровень экзогенного этилена, послеуборочная обработка плодов 1-МЦП способствуют сохранению исходного качества плодов (2-РА+МЦП).

9. Определены сроки хранения контрольных и обработанных 1-МЦП партий плодов, реализующие максимальный биологический потенциал сортов Мартовское, Северный Синап в условиях ОА, 2-РА, 3-РА. Использование 1-РА для хранения плодов изучаемых сортов не рекомендуется.

10. Не рекомендуется хранить в одной камере плоды нескольких сортов, имеющих различный уровень биосинтеза этилена и даже одного сорта, но с различной степенью зрелости.

11. Каждая технология хранения плодов имеет свои преимущества и недостатки, поэтому необходимо сравнительными испытаниями установить для каких сортов и какого качества плодов, сроков хранения, наличия материально-технической базы, квалификации кадров и для каких сегментов рынка целесообразно их использовать. В одном хозяйстве могут эффективно использоваться несколько технологий.

12. Выявленные механизмы развития загара позволяют вести поиск новых технологических возможностей защиты плодов от заболевания.

Многолетними исследованиями и производственной проверкой установлено, что максимальная эффективность разработанных технологий хранения плодов достигается при использовании продукции высокого качества, для гарантированного сохранения которой необходимо все элементы: производство, уборка, хранение, товарная обработка и доведение продукции до потребителя — объединить в единую управляемую технологическую систему.

Список литературы.

1. Гудковский В.А. Причины повреждения плодов загаром и система мер борьбы с этим заболеванием / В.А. Гудковский // Повышение эффективности садоводства в современных условиях Т.3: Материалы Всероссийской научно практической конференции. МичГАУ, 2003 – С.207-216.

2. Гудковский В.А. Основные итоги исследований по разработке и освоению инновационных технологий хранения плодов / В.А. Гудковский, Л.В. Кожина, А.Е. Балакирев, Ю.Б. Назаров // Инновационные основы развития садоводства России: Труды Всероссийского научно-исследовательского института садоводства имени И.В. Мичурина. – Воронеж: Кварта, 2011. – С. 268-291.

3. Гудковский В.А. Современные и новейшие технологии хранения плодов (физиологические основы, преимущества и недостатки) / В.А. Гудковский, Л.В. Кожина, А.Е. Балакирев // Труды Всероссийского научно-исследовательского института садоводства им. И.В. Мичурина. Научные основы садоводства: Сб. науч. Трудов. – Воронеж.: Кварта, 2005. —  С.309-325.

4. Гудковский В.А. Научно-практические основы совершенствования технологий хранения плодов, ягод и овощей в обычной, регулируемой и модифицированной атмосфере с использованием отечественного ингибитора биосинтеза этилена./В.А. Гудковский, Л.В. Кожина, А.А. Кладь, А.Е. Балакирев, Ю.Б. Назаров// Достижения, перспективы и направления развития садоводства и питомниководства в Российской Федерации: мат. науч.- практ. конф. Мичуринск-наукоград РФ, 2011.- С. 26-47.

5. Streif J. Haltbarkeit und Fruchtgualitat durch Fortschritte in der Lagertechnik verbessern: CA/ULO pur DCA pur oder mit MCP? Teil 1./ J. Streif, R. McCormick, D. Neuwald //. Besseres Obst, – 2008. — №8. – S. 9-11.

6. Streif J. Haltbarkeit und Fruchtgualitat durch Fortschritte in der Lagertechnik verbessern: ULO pur, mit DCA oder MCP? Teil 2. / J. Streif, R. McCormick, D. Neuwald // Besseres Obst. – 2008. — №9. – S. 10-12.

7. Geyer M., Praeger U. Lagerung gartenbaulicher Produkte // Kuratorium fur Technik und Bauwesen in der Landwirtschaft e.V. (KTBL), Darmstadt, 2012. – 296 p.

8. Zanella A (2003) Control of apple superficial scald and ripening — a comparison between 1-methylcyclopropene and diphenylamine postharvest treatments, initial low oxygen stress and ultra low oxygen storage. Postharvest Biol. Technol. 27: 69-78.

9. Rupasinghe HPV, Murr DP, Paliyath G, Skog L (2000) Inhibitory effect of 1-MCP on ripening and superficial scald development in ‘McIntosh’ and ‘Delicious’ apples. J. Hort. Sci. & Biotechnol 75: 271-276.

10. Watkins CB, Nock JF, Whitaker BD (2000) Responses of early, mid and late season apple cultivars to postharvest application of 1-methylcyclopropene (1-MCP) under air or controlled atmosphere storage conditions. Postharvest Biol Technol 19: 17-32.

11. Гудковский В.А. Роль минерального состава, гормонов и антиоксидантов в защите плодов и растений от физиологических заболеваний / В.А. Гудковский, Ю.Б. Назаров, Л.В. Кожина // Инновационные технологии производства, хранения и перепаботки плодов и ягод: Материалы науч.-практ. конф. 5-6 сентября 2009г, Мичуринск. 2009. С. 26-40.

12. Saure M.C.(2005). Calcium translocation to fleshy fruit: its mechanism and endogenous control. Sci.Hort.105:65-89.

13. Perring M.A., Jackson C.H.(1975). The mineral composition of apples. Calcium concentrations and bitter pit in relation to mean mass per apple. J. Sci. Food Agric .26:1493-1502.

14. Marschner H.(1995). Mineral Nutrition of Higher Plants, 2.Aufl.Academic Press, Amsterdam.

15. Ракитин В.Ю., Ракитин Л.Ю. Определение газообмена и содержания этилена, двуокиси углерода и кислорода в тканях растений / В.Ю. Ракитин, Л.Ю. Ракитин // Физиология растений. М.: Наука – Т.33.-выпуск 2. – 1986. – С. 403-413.

16. Морозова Н.П. Спектрофотометрическое определение содержания фарнезена и продуктов его окисления в растительном материале / Н.П. Морозова, Е.Г. Салькова // Биохимические методы. М.:Наука, 1980. с. 107-112.

17. Луковникова Р.А. Определение витаминов других биологически активных веществ./ Р.А. Луковникова, Н.П. Ярош.// Методы биохимического исследования растений. Под ред. А.И. Ермакова, Ленинград: ВО «Агропромиздат», 1987. С. 111-119.

18. Tromp J. Fundamentals of temperate zone tree fruit production/ J. Tromp, A.D. Webster and S.J. Wertheim // Backhuys Publishers, Leiden, 2005. – 400 p.

19. Ju Z, Bramlage WJ (1999) Phenolics and lipid-soluble antioxidants in fruit cuticle of apples and their antioxidant activities in model systems. Postharvest Biol Technol 16: 107-118

20. Ju Z. Cuticular phenolics and scald dewelopment in “Delicious” apples. / Z. Ju; W.J. Bramlage // J.Am.Soc.Hortic.Sc., 2000; Vol.125, N 4, — P.498-504.

21. Alwan TF, Watkins CB (1999) Intermittent warming effects on superficial scald development of ‘Cortland’, ‘Delicious’ and ‘Law Rome’ apple fruit. Postharvest Biol. Technol. 16: 203-212.

22. Wang Z, Dilley DR (2000) Initial low oxygen stress controls superficial scald of apples. Postharvest Biol. Technol. 18: 210-213.

23. Whitaker BD (2000) DPA treatment alters a-farnesene metabolism in peel of ‘Empire’ apples stored in air or 1.5% 02 atmospheres. Postharvest Biol. Technol. 18: 91-97

24. Blanpied C.D. A review of the biology of storage scald and the technology of its controll// Tree fruit post harvest Journal. 1990/ 1. P. 14-15

25. Watkins CB (2003) Principles and practices of postharvest handling and stress. In: Apples, Botany, Production and Uses. (Ferree DC, Warrington IJ, eds), CABI publishing, Wallingford, Oxon, UK: 585-614

26. Lau OL, Barden CL, Blankenship SM, Chen PM, Curry EA, DeEU JR, Lehman-Saleda L, Mitscham EJ, Prange RK, Watkins CB (1998) A North American cooperative survey of ‘Starkrimson Delicious’ apple responses to 0.7% 02 storage on superficial scald and other disorders. Postharvest Biol Technol 1 13: 19-26

27. Chervin C, Raynal J, Andre N, Bonneau A (2001) Combining controlled atmosphere storage and ethanol vapors to control superficial scald of apple. HortScience 36: 951-952.

28. Geyer M., Praeger U. Lagerung gartenbaulicher Produkte // Kuratorium fur Technik und Bauwesen in der Landwirtschaft e.V. (KTBL), Darmstadt, 2012. – 296 p.

29. Wang Z, Dilley DR (2001) Initial low oxygen stress (ILOS) controls scald of apples without using postharvest chemical treatments. Acta Hort 553: 261-266

30. Ju Z, Duan Y, Zu Z (2000) Mono, di- and tri-acylglycerols and phospholipids from plant oils inhibit scald development in ‘Delicious’ apples. Postharvest Biol Technol 19: 1-7

31. Lafer F. Die Fruchtgualitat erhalten durch dynamische CA – Lagerung./ F. Lafer// Besseres Obst. – 2008. — №9.-S. 17-20.

32. Zanella A., Cazanelli P., Panarese A., Coser M., Cecchinel, M. andRossi, O. Fluorescence response to low oxygen stress:Modern storage technologies compared to SmartFresh treatment of apple./ A. Zanella, P. Cazanelli, A. Panarese, M. Coser, M. Cecchinel and O. Rossi // Acta Hort.- 2005.-№ 682. –S. 1535 – 1542.

33. Zanella A. Control] of apple scald — a comparison between 1 -MCP and DP A postharvest treatments, ILOS and ULO storage, ActaHorticulturae 600, ISHS 2003, pp.271-275.

34. Zanella A., Gazanelly P., Rossi O. Dynamic controlled atmosphere storage by means of chlorophyll fluorescence response for firmness retention in apples// Proc. 1C on Ripening Regulation and Postharvest fruit quality. Acta Hort. 796. ISHS 2008, pp.77-82.

35. Schouten SP, Prange RK, Verschoor JA, Lammers TR, Oosterhaven J (1997) Improvement of quality of ‘Elstar’ apples by dynamic control of ULO conditions. CA’97, University of California, Davis, CA, USA.

36. Veltman RH, Verschoor JA, Ruijsch van Dugteren JH (2003) Dynamic control system (DCS) for apples (Malus domestica Borkh. cv ‘Elstar’): optimal quality through storage based on product response. Postharvest Biol Technol 27: 79-86.

37. Mattheis J, Buchanan DA, Fellman Ж (1998) Volatile com­pounds emitted by ‘Gala’ apples following dynamic atmosphere storage. J Amer Soc Hort Sci 123: 426-432

Придорогин М.В.,

старший научный сотрудник отдела экологии сада ВНИИС им. И.В. Мичурина

Варианты дерново-перегнойной системы содержания почвы в саду яблони

Варианты дерново-перегнойной системы содержания почвы в саду яблони

Краткая характеристика и актуальность дерново-перегнойной системы содержания почвы в плодовых садах

  • Технология дерново-перегнойной системы содержания почвы в саду, — это аналог газонной системы в садах, признанной лучшей в странах Западной Европы и США.
  • Она давно разработана с учетом зарубежной концепции интенсив-ного садоводства и является непременной составляющей техно-логии производства плодов уже и в современных интенсивных и суперинтенсивных садах.
  • Несмотря на преимущества в радикальном улучшении свойств почв и повышения продуктивности возделываемой садовой рас-тительности, перед применяемыми в настоящее время системами содержания почвы под черным паром и паросидерации, ее вне-дрение в отечественных садоводческих хозяйствах пока незаслу-женно сопряжено со сложностями, связанными с существующими противоречиями в обосновании сроков технологического воспро-изведения.
  • Ее многочисленные модификации известны под названиями: дерново-мульчевая система содержания почвы в садах, газонно-гербицидная, культурное залужение междурядий в саду, культур-ное задернение междурядий в саду, и в качестве других.

Модификации дерново-перегнойной системы

Их отличает друг от друга манера технологического воспроизведения, например:

  • рекомендуется применять не только мятликовые, как это предусматривается классическим прототипом — газонной системой содержания почвы, но еще и использованием многолетних видов бобовых трав, а даже злаково-бобовые травосмеси.
  • В случаях с применением классического приема, с одинаковым содержанием травяного покрытия в междурядьях по типу газонов, модификации могут предусматривать неодинаковое содержание почвы в приствольных полосах.
  • Известны модификации дерново-перегнойной системы, связанные со сроками реализации залужения междурядий. Например, до закладки плодового сада, на момент его закладки, и после закладки через 5-8 лет.
  • Все модификаций газонной системы содержания почвы в садах, придают им конкретные отличительные качества, которые предусмотрены для их использования в разных условиях окружающей среды.
  • Выбор применения конкретной разновидности модификации системы, зависит от ситуаций, связанных с разным проявлением факторов природной окружающей внешней среды, и экологической напряженности.
  • В немалой степени выбор зависит еще и от их влияния на условия жизне-обеспечения для возделываемых растений, а также от хозяйственных задач, которые необходимо решать, с учетом вариаций их проявления над конкретной местностью и в связи со строением ландшафта.

Характер применения модификаций

при помощи газонной системы можно решать разные производственно-значимые задачи:

  1. использовать для фитомелиорации почв с деградированным плодородием и для улучшения их свойств;
  2. применять как особый вид почвозащитной агротехники для борьбы с эрозией;
  3. в качестве особого способа для преодоления на садовых участках последствий почвоутомления, для возрождения почвенного биоценоза и активизации его деятельности путем позитивной и управляемой трансформацией свойств почв и создаваемых ею режимов жизнеобеспечения;
  4. для радикального воздействия на повышение уровня биологической продуктивности возделываемых плодовых деревьев.
  5. для создания транспортных коридоров по междурядьям, с прочным дерновым покрытием почвы, выдерживающим проезды конструкций машинотракторных агрегатов, предусматриваемых технологическим регламентом работ по уходу за садом.

Новые разработки технологии газонной системы содержания почвы во всероссийском НИИ садоводства им. И.В. Мичурина

Во всероссийском НИИ садоводства, разработан новый технологический регламент содержания почвы по газонной — дерново-перегнойной системе в современных интенсивных садах яблони.

  • Их реализация на садовых участках предусматривает способ содержания междурядий под покровом сеяных трав по классической схеме дерново-перегнойной системы. Содержание почвы в приствольных полосах рекомендуем сочетанием гербицидного пара и укрытием поверхности почвы органическими материалами в качестве мульчи (мульчпокрова).
  • При условии ее применения, гарантируется срок вступления яблоневых деревьев в пору товарного плодоношения, на 3-4 год, с момента закладки сада и в зависимости от сортоподвоных комбинаций деревьев используемых для закладки насаждения.
  • Сорта и сортоподвойные комбинации, рекомендованы из числа тех, что прошли испытание и апробацию в экспериментальных садах ОПО ВНИИС им. И.В. Мичурина.

График ежегодной динамики изменений уровня урожая плодов (кг/дер.)

График ежегодной динамики изменений уровня урожая плодов (кг/дер.)

Схема технологии реализации новой разработки двумя способами: до и после закладки плодового сада

Схема технологии реализации новой разработки двумя способами: до и после закладки плодового сада

Перечень регламентов, которые необходимы для реализации газонной (дерново-перегнойной) системы содержания почвы на садовых участках

  • Технологическое воспроизведения обсуждаемых способов создания дернового покрытия почвы на реальных садовых участках, важным представляется сосредоточение внимания технологов на первоочередном соблюдении следующих регламентов:
    1. регламент мероприятий связанных с выбором места под сад;
    2. регламент окультуривания почвы;
    3. регламент содержания почвы в междурядьях под черным паром;
    4. регламент залужения междурядий и уходных работ в начальные -первые 2 года формирования дернового покрытия из сеяных трав;
    5. регламент ухода за травостоем старше 2-х лет;
  • Так как залужение почвы производится в плодовом саду, не менее важным представляется сочетание выше обозначенных регламентов, с регламентами ухода за плодовыми деревьями и за содержанием почвы в приствольных полосах:
    1. регламент работ по закладке сада;
    2. регламент ухода за плодовыми деревьями;
    3. регламент содержания почвы в приствольных полосах.

Заключение

  • Изложенный перечень технологических регламентов предусматриваемых для реализации газонной (дерново-перегнойной) системы содержания почвы в интенсивных слаборослых садах, мы представляем базовым. В перечень этой основы могут быть внесены дополнения, как в виде других регламентов, так и в виде отдельных агротехнических приемов, в связи с характерным строением природного ландшафта территорий Черноземья, на которых предполагается располагать садовые участки с интенсивными садами яблони.
  • Изменения в регламенте вероятны и в связи характерными местными вариациями природных факторов и формируемых ими условий внешней окружающей среды.
  • Все выше изложенное, должно согласовываться с информацией, получаемой после проведения агроэкологических макро- и микрорайонирований территорий в отношении требований к условиям и месту произрастания планируемых к возделыванию сортов яблоневых деревьев и сеяных трав, последующего выделения типичных территорий и участков, как элементов экологически обоснованного землеустройства.

Ярмилка В., кандидат сельскохозяйственных наук

Современные способы хранения плодов, овощей, ягод и винограда

Конечной целью сельхозпроизводителей является не все возрастающие объемы производства продукции, а реализация ее по наиболее выгодной цене. В связи с этим, особое значение имеют вопросы по послеуборочной доработке плодов, овощей, их сортировка, упаковка, продление периода реализации — все это позволяет существенно повысить конкурентоспособность продукции и получить больший доход.

Проект аграрного маркетинга организовал и провел в последнее время целый ряд мероприятий, посвященных этим актуальным вопросам. Фермеры получили возможность встретиться, прослушать лекции, получить консультации и практические рекомендации по каждому из своих хозяйств, одного из лучших специалистов в области хранения плодоовощной продукции профессора Калифорнийского университета Мартина Мейсона, а также представителя итальянских компаний, производящих современное холодильное оборудование, Ю. Калина. Была организована и осуществлена учебная поездка в Молдову, где фермеры Львовской, Закарпатской, Черкасской, Полтавской, Одесской областей и Крыма ознакомились с новейшими холодильниками и технологиями хранения плодов, овощей и винограда. Этим же вопросам большое внимание уделялось на первой международной конференции "Овощи и фрукты Украины: рынок новых возможностей", проведенной при поддержке Проекта аграрного маркетинга и АПК-Информ.

Существует много способов хранения плодоовощной продукции, ягод и винограда.

Основные из них: сушка, замораживание и хранение в холодильниках.

На сегодняшний день существует несколько промышленных технологий сушения: конвективная, кондуктивная, сублимационная, высокочастотная, современная экологически чистая инфракрасная технология. Последняя заслуживает особого внимания, т.к. эта технология обезвоживания позволяет сохранить витамины и другие биологически активные вещества на 85-90% от исходного продукта. При последующем непродолжительном замачивании сушеный продукт восстанавливает все свои натуральные свойства: цвет, естественный аромат, форму, вкус, при этом не содержит консервантов, т.к. высокая плотность инфракрасного излучения уничтожает вредную микрофлору в продукте, благодаря чему он может сохраняться около года без специальной тары, в условиях, которые исключают образование конденсата. В герметичной таре данный сухопродукт может храниться до 2 лет без ощутимой потери своих свойств. В зависимости от исходного сырья объем сушеного продукта уменьшается в 3-4 раза, а масса в 5-9 раз, что является положительным фактором при необходимости складирования и транспортировки. Все эти факторы позволяют сделать вывод о том, что применение ИК-технологии позволяет производить сушеные продукты такого качества, которого нельзя достичь при других известных методах сушения.

Для пищевой промышленности, при производстве продуктов быстрого приготовления: супов, каш, кетчупов, майонезов, кондитерских изделий и др. наибольший интерес представляют сушеные: лук, петрушка, морковь, паприка, баклажаны, томаты, тыква, кабачки, ежевика, черная смородина — и это далеко не полный перечень.

Сейчас в Украине насчитывается не более полусотни производителей сушеных пищевых продуктов, это такие предприятия, как: Малинский консервный завод (Житомирская обл.), Ривненский овощесушильный консервный завод (г. Ривне), Сумской плодоовощной консервно-сушильный завод, ОАО " Недригайловский консервный завод", "Хмельницкплодоовощпром", заготовительно-перерабатывающее предприятие г. Ракитное Киевской обл., ассортимент выпускаемой ими продукции: овощи, сухофрукты, сушеные грибы, полученные в основном конвективным способом сушки. В настоящее время в Украине производителей высококачественной сушеной продукции, полученной с применением ИК-технологии, практически нет, поэтому тем предприятиям, которые внедрят это производство, будет обеспечен успех. А пока эту свободную нишу заполняют такие поставщики, как николаевская фирма "ЛК Трейдер Украина", импортируя сушеные лук, морковь из Узбекистана.

Производителей оборудования для сушки пищевых продуктов в Украине мало. Предлагаются в основном шкафы для конвективной сушки. Различные виды сушильного оборудования предлагают киевские фирмы "Кимо-Бизнес", "Тронка-Агротех", "Энергия-Инвест", харьковские: "Технолог АП", НПО "Росс", "Криокон" и др. Не является проблемой заказать сушилки любого типа и производительности у зарубежных фирм, но это оборудование существенно дороже. Стоимость его в зависимости от способа и производительности от десятков до сотен тысяч долларов США.

Конвекционный сушильный шкаф для фруктов и овощей

В этом плане заслуживает внимания оборудование для инфракрасной сушки, выпускаемое НПО "Феруза" (г. Санкт- Петербург), представительства которого есть в Москве, Кишиневе, Днепропетровске ("Клио-Трейд"), Киеве (ООО "Сайленс"). Это предприятие выпускает 3 модификации бытовых сушилок, которые могут использоваться в небольших фермерских хозяйствах: "Пичуга", "Восток" и "Восток-LUX", а также промышленные сушильные установки "Надежда", промышленный сушильный шкаф "Универсал", "Универсал-2", сушильная установка "Феруза-300".

В январе 2005 года по грантовой программе поддержки фермерских объединений Проекта аграрного маркетинга в Украине львовскому кооперативу "Агродвир" передано 4 установки для инфракрасной сушки "Феруза".

Существует и другой высококачественный способ сушки — вакуумная сублимационная, иначе ее называют лиофилизацией или возгонкой, это процесс перехода вещества из твердого состояния в газообразное без жидкой фазы. Данный способ позволяет сохранить до 95% питательных веществ, витаминов, ферментов, биологически активных веществ. Если сублимированные продукты залить водой, то они восстанавливаются в течение 2-3 минут. Весят они в несколько раз меньше, чем свежие, не требуют специальных условий хранения и при температуре не выше +39°С могут храниться 2-5 лет. Себестоимость сублимированного продукта может в 4 раза превышать аналогичную продукцию, высушенную конвективным способом.

Сублимационная сушка — технология затратная, она приобретает экономическую целесообразность при производстве дорогостоящей продукции, например, органических, экологически чистых ягод и фруктов. Раньше в пищевой промышленности ее использовали в основном для выполнения заказов военной, оборонной и космической отраслей, теперь она оказалась востребованной для приготовления продуктов премиум класса.

Сублимированные ягоды ежевики

По оценке специалистов датской компании Niro A/S, объем мирового производства сублимированных продуктов питания — около 70 тыс. тонн, из них 40 тыс. тонн овощи, 25 тыс. тонн мясо и рыбопродукты и 5 тыс. тонн фрукты и ягоды. Рост мирового рынка сублимированных продуктов составляет примерно 3,5% в год.

Крупнейшие производители сублимационного оборудования: Niro Atlas-Stord Denmark A/S (Дания), Leybold (Германия), Stokes (США), Edwards (Великобритания), Shanghai Tofflon Science and Technology Co., Ltd (Китай). В России сублимационные установки производят НПО "Вакууммаш" (г. Казань), фирмы "Шабетник и Компания", "Биохиммаш".

В настоящее время одним из наиболее распространенных способов хранения быстропортящихся плодов и овощей является технологический процесс быстрого замораживания. Основным требованием, предъявляемым к этому способу, является обеспечение условий, при которых мягкие ягоды, овощи и фрукты (земляника, ежевика, малина и др.) не мнутся, сохраняется их целостный вид, исключается возможность смерзания отдельных ягод и кусочков плодов и получается сыпучий замороженный продукт, который удобно фасовать и перерабатывать. Технология, удовлетворяющая данным требованиям, реализуется в специальных скороморозильных аппаратах, использующих явление флюидизации ("сжижения"): слой из большого числа ягод или кусочков продукта, насыпанных на сетчатый конвейер, под воздействием интенсивного вертикального потока воздуха начинает вести себя как жидкость — происходит выравнивание толщины насыпанного слоя по поверхности конвейера, и частицы внутри слоя постепенно перемешиваются. В таком состоянии каждая ягода интенсивно и со всех сторон омывается потоком холодного воздуха, что обеспечивает ее быстрое замораживание, и из-за постоянного перемешивания не происходит смерзания соприкасающихся ягод и кусочков. Для замораживания используют сырье только высокого качества, отсортированное, помытое, без дефектных экземпляров. Некоторые виды сырья для инактивирования ферментов перед замораживанием бланшируют. Замораживание как способ хранения и консервирования основано на обезвоживании тканей плодов и овощей путем превращения содержащейся в них влаги в лед. Лед образуется при температуре от -2 до — 6°С, а в некоторых видах овощей от -1 до -3°С. Чем быстрее происходит процесс замораживания, тем больше образуется кристаллов, меньше их размеры, выше качество продукта. Плоды, ягоды, овощи замораживают при температуре -35-45°С, для хранения доводят температуру продукта до -18°С и далее хранят при этой температуре.

Внешний вид ягод после заморозки

Конструкции флюидизационных аппаратов, выпускаемых различными фирмами, наиболее известные из которых Frigoskandia (Швеция), Starfrost (Англия) и др., похожи и включают в себя следующие основные компоненты: теплоизолированный корпус, прямолинейные транспортные сетчатые контейнеры, охлаждающий воздух, теплообменник, центробежные вентиляторы, систему управления. Все внутренние компоненты, включая воздухоохладитель, выполняются из высококачественной нержавеющей стали. Флюидизационные скороморозильные аппараты — это высокопроизводительные устройства, обеспечивающие замораживание больших объемов продукции от 600 кг/час до 20 т/час. Диапазон продуктов, замораживаемых в таких аппаратах, очень широк. Это различные ягоды (ежевика, земляника, малина, смородина), резаные плоды (яблоки, груши, персики, абрикосы, сливы, дыни), овощи (зеленый горошек, бобы, резаный лук, картофель, морковь, кукуруза), дикорастущие лесные ягоды.

Наши соседи в Молдове уделяют большое внимание развитию этого перспективного направления, уже работают предприятия, промышленно производящие замороженную плодоовощную продукцию, в Кэушень (на основе быстрозамораживающего тоннеля с производительностью 2 т/час), Купчине (тоннель 1,5 т/час), в Слободзее (тоннель 1 т/час).

В этом году началось производство быстрозамороженных продуктов в Сороки на консервном заводе "Альфа Нистру" (тоннель с производительностью 3,5 т/час).

С развитием сети супермаркетов и наличия специальных витрин и торгового оборудования, предназначенного для реализации быстрозамороженных плодоовощных продуктов, этот вид продукции будет востребован у нас в стране.

Таблица 1

Период хранения фруктов и овощей в зависимости от температуры и влажности

Яблоки -1+4 90-95 1-8 месяцев
Баклажаны 8-12 90-95 1-2 недели
Брокколи 0-1 95-100 1-2 недели
Вишня -1+2 90-95 3-7 дней
Земляника 0 90-95 5-7 дней
Капуста 0-1 95-100 3-7месяцев
Морковь 0-1 95-100 4-8 месяцев
Цветная капуста 0-1 95-100 2-4 недели
Сельдерей 0-1 95-100 1-3 месяца
Слива -1+2 90-95 1- 8 недель
Смородина -0,5 -0 90-95 7-28 дней
Огурцы 8-11 90-95 1-2 недели
Чеснок 0 70 6-8 месяцев
Виноград -1-0 90-95 4-6 месяцев
Дыни 4-15 85-90 1-3 недели
Лук -1-0 70-80 6-8 месяцев
Груши -1+3 90-95 1-6 месяцев
Картофель (молодой) 4-5 90-95 3-8 недель
Картофель 4-5 90-95 4-8 месяцев
Малина -0,5 -0 90-95 2-3 дня
Перец 7-10 90-95 1-3 недели
Персик -1+2 90 2-6 недель
Черешня -1+2 90-95 2-3 недели

Наиболее распространенным способом хранения плодов и овощей является хранение в холодильниках. Длительность хранения определяется целым рядом факторов, начиная от влияния почвенно-климатических условий возделывания культур, сортовых особенностей, рационального использования удобрений, агротехники, орошения, системы защиты от вредителей, болезней и сорняков, сроков и способов уборки, товарной обработки и, конечно же, способов и условий хранения. Плоды и овощи, предназначенные для длительного хранения, должны быть здоровыми и не иметь механических повреждений. Холодильник — это не госпиталь, и нельзя надеяться на то, что больные поврежденные плоды будут долго храниться.

Все биохимические процессы во фруктах и овощах зависят от температуры. При высокой температуре происходит ускоренный обмен веществ, потеря влаги, витаминов, органических веществ. Зависимость обмена веществ от температуры обозначается числом Wan Hoff. Например, для моркови и капусты это число находится между 2 и 3, т.е. при повышении температуры на 10°С интенсивность дыхания удваивается или утраивается.

Проще говоря, овощи начинают быстрее "стареть" и приходить в негодность. Поэтому крайне важно как можно быстрее охладить продукцию, предназначенную для закладки на длительное хранение.

После уборки плодов и помещения их в холодильник самыми важными процессами, обеспечивающими длительное хранение, являются процессы дыхания и транспирации. Поэтому для оптимального хранения плодов и овощей необходимо создание и поддержание оптимального температурно-влажностного режима, оптимальной концентрации кислорода и углекислого газа, удаление этилена. Оптимальные параметры температуры и влажности для обычных холодильников для основных видов культур приведены в табл. 1.

Чтобы существенно уменьшить естественную убыль веса плодоовощной продукции и максимально продлить срок хранения, необходимо как можно быстрее охладить продукцию после сбора урожая и поддерживать оптимальные параметры хранения.

Это достигается в холодильниках с регулируемой газовой средой (СА — контролируемая атмосфера, ULO — Ultra Low Oxygen, что означает ультра низкое содержание кислорода).

Низкое содержание кислорода позволяет резко снизить интенсивность дыхания плодов, что способствует более длительному и качественному их хранению. Для различных культур и сортов минимально допустимая концентрация кислорода может быть определена методом его снижения до момента образования этанола. Если процесс образования этанола будет определен в самой ранней стадии, то его можно остановить при помощи повышения концентрации кислорода на десятые доли процента, таким образом определяется минимально допустимая концентрация кислорода для данного сорта. Основным условием поддержания оптимально низкой концентрации кислорода является герметически закрывающаяся камера. Другим важным компонентом атмосферы, влияющим на хранение плодоовощной продукции, является углекислый газ, который выделяется плодами в результате дыхания и в повышенных концентрациях тормозит этот процесс. Если поместить фрукты или овощи в герметическое помещение, то концентрация в атмосфере кислорода (21%) будет в процессе дыхания снижаться, а углекислого газа возрастать. Очень высокая концентрация СО2 приводит к гибели продукции в результате превращения сахаров в этанол. Для большинства фруктов и овощей оптимальная концентрация углекислого газа составляет от 0,5% до 5%. Избыточное содержание СО2 в камерах холодильников с регулируемой газовой средой удаляется с помощью углекислотных адсорберов. Быстрое достижение оптимальной концентрации кислорода достигается при помощи продувки камер азотом. В настоящее время разработаны эффективные способы создания и поддержания концентрации регулируемой атмосферы при помощи автоматической компьютерной газоаналитической системы управления, с работой которой имели возможность ознакомиться фермеры-участники учебной поездки в Молдову по послеуборочной доработке и хранению плодоовощной продукции, организованной Проектом аграрного маркетинга в Украине. Одно из самых современных предприятий, которое посетила делегация, было OOO "BASFRUCT", основанное в 2003 году, расположенное в с. Романешть Страшенского района. Основное направление деятельности — производство, хранение, упаковка, реализация яблок и столового винограда. Учредители компании АО "BASVINEX" — крупнейший производитель и экспортер молдавской винной продукции на рынке России и республиканский Союз ассоциаций сельскохозяйственных производителей Молдовы, включающий в себя 1800 производителей с/х продукции и свыше 500 тыс. собственников земли. В сентябре 2003 г. OOO "BASFRUCT" с финансовой помощью Агентства США по международному развитию (USAID) при содействии CNFA приступило к строительству и в августе 2004 г. завершило и ввело в эксплуатацию холодильник с контролируемой газовой средой мощностью 2500 тонн. При холодильнике смонтирована современная линия сортировки яблок, которая позволяет автоматически сортировать плоды не только по размеру, но и по интенсивности окраски, а также позволяющая отбраковывать плоды, имеющие механические повреждения. Установлено также оборудование для производства тары из пятислойного картона, которая соответствует всем европейским требованиям.

В 2004 году предприятие было сертифицировано по системе контроля за качеством в соответствии с требованиями международных стандартов ISO-9001:2000 и НАССР. (Данный сертификат является необходимым условием для деятельности на международном рынке.) Стандарт, установленный по отношению к размеру яблок, составляет 140-175 г, или 70-85 мм в диаметре. Особенно высоким спросом пользуются сорта Mantuaner, Idared, Richaared Delicious, Colden Rezistent, Spartan, Mutsu, Ionagold, Gala, Ionafree, Braenburn, Topaz, Florina.

В 2004 году BASFRUCT заложил 50 га интенсивного яблоневого сада и 25 га виноградника, в основном сортом Молдова. Это позволит не закупать продукцию для закладки на длительное хранение, а иметь свою.

Оптимальные режимы хранения плодов и винограда в регулируемой газовой среде были разработаны в нашей стране еще в средине 80-х годов учеными Крымской опытной станции садоводства, Крымского сельскохозяйственного института, Института винограда и вина "Магарач", позволявшие сохранять при минимальных потерях яблоки, груши до марта, а виноград даже до первой декады мая. Эти работы не потеряли своей ценности и до настоящего времени. Сейчас проблема в достаточно высокой стоимости современных холодильников и современного оборудования.

Таблица 2

Состав газовой среды для хранения винограда

Агадаи 3 5
Тербаш 3 3
Нимранг 3 3
Асма 8 5
Шабаш 8 5
Ризага 5-8 5
Мускат гамбургский 5-8 3
Италия 5-8 3-5
Молдова 5-8 3-5
Кара изюм ашхабадский 5-8 3-5
Карабурну 3 2-3

Особенность хранения винограда, как в обычных условиях, так и в условиях регулируемой газовой среды заключается в периодической фумигации сернистым ангидридом (сульфурации) для подавления фитопатогенной микрофлоры. В среде с повышенной влажностью сернистый ангидрид образует агрессивную среду, которая выводит из строя оборудование. Поэтому камеры современных холодильников, предназначенные для хранения винограда, изготовляются из нержавеющей стали. Также необходимо дополнительное оборудование для удаления сернистого ангидрида из камеры после 20-30-минутной обработки.

Во время проведения первой международной конференции "Овощи и фрукты Украины: рынок новых возможностей" большой интерес вызвала информация компании "Степак" об особенностях перспективной технологии Xtend — сохранения свежих продуктов с использованием современной упаковки для хранения и транспортировки плодоовощной продукции. Xtend — технология, позволяющая сохранить овощи и фрукты в состоянии абсолютной свежести. Основа технологии — создание модифицированной атмосферы (МА) внутри полимерной упаковки (пакета) и поддержание ее до момента потребления хранящегося продукта. Запатентованный полимерный пакет позволяет благодаря тому, что поддерживает оптимальное соотношение углекислого газа, кислорода и влажности, сохранять продукцию в состоянии абсолютной свежести, при этом в упаковке отсутствует конденсат. Суть данной технологии в том, что овощи или фрукты должны быть охлаждены до температуры 1-6°С и упакованы в специальный пакет Xtend, который сохранит плод в состоянии абсолютной свежести в течение длительного времени. Затем коробки с продукцией укладываются на паллеты, и в рефрижераторах или в холодильной камере вагона при температуре 1-6°С товар доставляется без потерь до места назначения.

Сроки хранения плодоовощной продукции, упакованной по данной технологии: черешня — до 50-60 дней, земляника — 12-18 дней, огурец — 18-21 день, петрушка, укроп — 12-14 дней. По другим культурам данные предоставлены в табл. 3.

Xtend — технология, которая предусматривает создание специального упаковочного центра, необходимого для быстрого охлаждения и упаковки плодоовощной продукции. В зависимости от ассортимента и объема продукции упаковочные центры могут различаться по размеру площади, комплектацией оборудованием разной пропускной способности и разной технологией охлаждения (водяной или воздушной).

Хранение плодов черешни по Xtend технологии

Упаковочный центр необходим для переработки (упаковки по технологии Xtend) промышленных объемов от 40-60 тонн продукции в сутки и более. Крайне важно также расположение данного центра в непосредственной близости от места произрастания продукции, чтобы время после сбора урожая и началом его упаковки составляло не более 5-6 часов. Это связано с тем, что по истечении такого срока сохранить продукцию в состоянии абсолютной свежести уже не представляется возможным. Стандартный упаковочный центр разделен на несколько технологических участков, где огромное значение имеет охлаждение, являющееся началом холодовой цепи, работающей на длительное сохранение фруктов и овощей в состоянии абсолютной свежести. Очень важна качественная сортировка продукции перед упаковкой, в упаковочный пакет не должны попасть некачественные, поврежденные или загнившие плоды. Последним наиважнейшим условием является грамотная перевозка продукции от упаковочного центра до места реализации товара. Если эти условия не соблюдаются, можно потерять продукцию.

Таблица 3

Длительность хранения плодоовощной продукции при использовании Xtend-технологии

Лук зеленый (луковица и перо) 0°С 21-30
Цветная капуста 0°С 30
Редис 0°С 14-18
Кукуруза (неочищенные початки, 28-50 шт.) 0°С 18-28
Огурцы 9-10°С 18-21
Баклажан 10-12°С 18-21
Перец сладкий 7-10°С 18-21
Помидоры 8-12°С 18
Зелень (петрушка, укроп, мята) 1-2°С 12-14
Черешня -1-0°С 30-60
Персики 0-1°С 30-35
Нектарин 0-1°С 30-35
Слива 0-1°С 30-35
Абрикос 0-1°С 25-30
Земляника 0-1°С 12-18
Ежевика 0°С 20-40
Виноград 0-1°С 30-40
Инжир -1-0°С 20-40

Закрытое акционерное общество «Острогожсксадпитомник»

397807, Россия, Воронежская область, Острогожский район, п. Центрального отделения совхоза «Острогожский», ул. Центральная, д. 21

ОГРН 1023601035127 ОКПО 00646363 ИНН 3619006116 КПП 361901001 Р/с 40702810513220100175

Центрально-Черноземный банк Сбербанка России г. Воронеж

К/с 30101810600000000681 БИК 042007681 ОКВЭД: 01.13.2; 01.11.1; 01.11.3; 01.12.1; 01.13.23; 01.21.

т. (47375) 2-50-67, 5-11-36, т./ф. (47375) 5-11-31

Плодово-ягодная продукция 2013 г.

Земляника 400 договорная Июнь
Вишня 250 договорная Июнь — Июль
Алыча 200 договорная Июнь — Июль

Генеральный директор

Гапоненко Евгений Николаевич

Тел. +7 952 540 82 01

e-mail: gapga042@rambler.ru

Katrzyna Dominikowska

Новые технологии производства рассады земляники в Польше

Наш питомник:

посадочный материал, сорт, земляника, фриго

Это наш семейный бизнес, которым мы занимаемся более 25 лет

Производим сертифицированный посадочный материал земляники (более 6 млн. шт.)

70% на экспорт, 30% отечественный рынок

Особенности современной технологии получения рассады земляники

  1. Производство рассады в больших объемах
  2. Высокий выход рассады с гектара
  3. Установленные параметры качества рассады
  4. Возможность выкопки рассады в нужный потребителю срок

Экспорт – основной фактор прогресса польских маточников

посадочный материал, сорт, земляника, фриго«Северный источник» рассады

žВ 1996-97 гг. начали экспорт в страны Средиземноморья

žБлагоприятные климатическое положение Польши

žПостепенное подавление испанского рынка польским

žВ 2008 г. около 80 млн. польской рассады было отправлено на юг Европы

Процедуры, предшествующие закладке маточника земляники:

  • Химическое обеззараживание почвы или соответствующий севооборот
  • Система удобрения
  • Здоровый и качественный посадочный материал
  • Система защиты растений
  • Рациональный полив
  • И прочие агротехнические процедуры

Организация труда – залог высокой производительности

  • Механизированная выкопка рассады
  • Перевозка рассады с поля в сортировочный цех
  • Работа в помещении ( вне зависимости от погоды)
  • Работа при сортировочных столах повышает производительность, а, следовательно, и заработную плату
  • Необходимость в наличии холодильника

Организация труда в хозяйстве:

В современном маточнике работает 50- 200 человек. Каждый имеет свои функции в производственном процессе

В лучших польских маточниках за день обрабатывают 300-800 тыс. шт. рассады

Производительность рабочих на сортировальных столах — около 5 тыс. шт.. за 8-часовой рабочий день

Отличное качество рассады!

  • Надежный источник маточных растений
  • Химическое обеззараживание почвы
  • Система защиты растений
  • посадочный материал, сорт, земляника, фриго

  • Санитарное состояние рассады подтверждает свидетельство и сертификат

Качество

посадочный материал, сорт, земляника, фриго

žКонтроль качества работы людей на каждом этапе производства

žХорошее качество упаковки

žСоответствующий температурный режим хранения рассады

žПереход растений в состояние покоя – накопление запасных веществ

Время не ждет!

Важно получить достаточно рассады на данный момент Времени, обеспечить регулярные поставки для потребителей рассады «Фриго», которую выкапывают до зимы 10-20% производственных запасов -работников; и даже больше -оборудования

Работа в современных маточниках – как работа современных японских автомобильных заводов. Должны сочетаться большие объемы производства, очень хорошее качество и современная доставка!

посадочный материал, сорт, земляника, фригоФрезерование почвы перед закладкой маточника
посадочный материал, сорт, земляника, фригоФрезерование почвы перед закладкой маточника
посадочный материал, сорт, земляника, фригоРазличные технологии подготовки почвы под маточник земляники
посадочный материал, сорт, земляника, фригоСовременный маточник, где выращивается высококачественная рассада земляники
посадочный материал, сорт, земляника, фригоСовременный маточник, где выращивается высококачественная рассада земляники
посадочный материал, сорт, земляника, фригоСовременный маточник, где выращивается высококачественная рассада земляники
посадочный материал, сорт, земляника, фригоРабота в современном маточнике земляники
посадочный материал, сорт, земляника, фригоФормирование корневой системы на розетках земляники
посадочный материал, сорт, земляника, фригоОправка рассады в маточнике для лучшей укореняемости
посадочный материал, сорт, земляника, фригоСовременный маточник, где выращивается высококачественная рассада земляники
посадочный материал, сорт, земляника, фригоСовременный маточник, где выращивается высококачественная рассада земляники
посадочный материал, сорт, земляника, фригоСовременный маточник, где выращивается высококачественная рассада земляники
посадочный материал, сорт, земляника, фригоСистема орошения маточника земляники
посадочный материал, сорт, земляника, фригоОбработка маточника от вредителей и болезней — обязательный технологический прем
посадочный материал, сорт, земляника, фригоСовременный маточник земляники садовой
посадочный материал, сорт, земляника, фригоМаточник земляники садовой перед выкопкой
посадочный материал, сорт, земляника, фригоВыкопка рассады земляники садовой из маточника
посадочный материал, сорт, земляника, фригоВыкопка рассады земляники садовой из маточника
посадочный материал, сорт, земляника, фригоВыкопка рассады земляники садовой из маточника
посадочный материал, сорт, земляника, фригоВысокое качество выкапываемой рассады
посадочный материал, сорт, земляника, фригоСовременный маточник рассады земляники
посадочный материал, сорт, земляника, фригоСовременный маточник рассады земляники
посадочный материал, сорт, земляника, фригоСортировка рассады земляники по категориям качества
посадочный материал, сорт, земляника, фригоСортировка рассады земляники по категориям качества
посадочный материал, сорт, земляника, фригоВысокое качество рассады земляники садовой
посадочный материал, сорт, земляника, фригоРассада земляники, упакованная в ящики и подготовленная к закладке на хранение
посадочный материал, сорт, земляника, фригоПленочные теплицы для внесезонного получения урожая земляники
посадочный материал, сорт, земляника, фригоПленочные теплицы для внесезонного получения урожая земляники
посадочный материал, сорт, земляника, фригоПленочные теплицы для внесезонного получения урожая земляники
посадочный материал, сорт, земляника, фригоДвухстрочная система выращивания земляники садовой в пленочной теплице
посадочный материал, сорт, земляника, фригоДвухстрочная система выращивания земляники садовой в пленочной теплице
посадочный материал, сорт, земляника, фригоЦветение растений земляники первого года посадки
посадочный материал, сорт, земляника, фригоЦветение растений земляники, выращиваемых в пленочных теплицах по однострочной системе
посадочный материал, сорт, земляника, фригоОбильное плодоношение насаждений земляники, заложенных высококачественной рассадой фриго
посадочный материал, сорт, земляника, фригоОбильное плодоношение насаждений земляники, заложенных высококачественной рассадой фриго
посадочный материал, сорт, земляника, фригоОбильное плодоношение насаждений земляники, заложенных высококачественной рассадой фриго
посадочный материал, сорт, земляника, фригоОбильное плодоношение насаждений земляники, заложенных высококачественной рассадой фриго
посадочный материал, сорт, земляника, фригоСобранные плоды земляники садовой высокого качества
посадочный материал, сорт, земляника, фригоКачественные плоды земляники садовой
Жбанова Ольга Владимировна

Жбанова Ольга Владимировна
Заместитель исполнительного директора Ассоциации садоводов России (АППЯПМ), ведущий специалист Ассоциации садоводов-питомниководов (АСП-РУС) по ягодным культурам

Зуева И.М.

Зуева Ирина Михайловна,
кандидат с.-х. наук, с.н.с. ФГОУ ВПО МичГАУ.

Болезни земляники

Белая пятнистость листьев

Белая пятнистость листьев земляникиБелая пятнистость листьев земляники

Наиболее распространенная болезнь земляники, фактически сопровождающая данную культуру. Поражает листья, черешки, плодоножки и ягоды. На поверхности листьев появляются небольшие округлые белые пятна с пурпуровым ободком диаметром 1 — 2 мм . Центральная часть пятна со временем выпадает, чего не наблюдается при других болезнях листьев земляники, лист становится дырчатым и отмирает. Развитие болезни начинается с ранней весны. Первичное заражение новых листьев земляники проявляется в середине — конце мая. Инкубационный период болезни 10-15 дней. Гриб нетребователен к влаге и температурным условиям (оптим. t°= 20-22° C), но свет оказывает положительное влияние на развитие болезни. Обычно на более освещенных участках полевого типа болезнь развита сильнее. На общее развитие болезни влияют условия агротехники. Наиболее усиливается пораженность растений при: загущенной посадке, длительной эксплуатации участка, запаздывании с весенней обработкой почвы и уборкой сухих листьев. Большое влияние на развитие болезни оказывают погодные условия. Чем благоприятнее они складываются для взаимоотношения гриба и растения, тем раньше и в большей степени поражаются сорта крупноплодной садовой земляники. Болезнь распространяется ветром, дождем и насекомыми. Зимует гриб в пораженных частях растения.

Меры борьбы. Ранневесенняя очистка плантации от прошлогодних листьев и сжигание их. Для профилактики белой пятнистости растений опрыскивают осенью препаратом ордан, а при весеннем отрастании листьев — препаратом фалькон, или эупарен. Для закладки плантаций используют оздоровленную рассаду.

Бурая пятнистость листьев

Бурая пятнистость листьев земляникиБурая пятнистость листьев земляники

Болезнь развивается во второй половине лета. Одно из основных заболеваний земляники. Бурая пятнистость поражает листья, реже черешки и усы. На листьях болезнь вызывает очень характерные неправильно угловатые, большей частью ограниченные жилками листа крупные пятна. Вначале они темно-пурпурные, затем по мере отмирания пораженной ткани буреющие. По поверхности пятен с верхней стороны листа разбросаны чёрные, как бы лакированные, мелкие припухшие подушечки — плодовые тела гриба — возбудителя болезни. По мере созревания спор пигментированная покровная ткань лопается, и на поверхность выделяются вначале слизистые, затем ссыхающиеся комочки спор. По мере старения пятна теряют свои типичные признаки; плодоношение гриба, облегчающее диагноз болезни, исчезает, и листья кажутся просто засохшими. На черешках и усах пятна мелкие, немного вдавленные, без заметного плодоношения. Пурпурная окраска пораженной части растения — специфический внешний признак данной болезни. Гриб хорошо развивается при умеренных температурах (+8° C), но свет мало влияет на его распространение. Формирование спор происходит одинаково интенсивно как на свету, так и в темноте. Распространение инфекции зависит от выпадения капельножидкой влаги, которая размачивает ссохшиеся комочки спор, после чего они могут рассеиваться в воздухе. Заражение листьев бурой пятнистостью происходит главным образом с нижней стороны. Инкубационный период болезни длится в среднем 5-10 дней. Распространяется болезнь так же, как и белая пятнистость.

Меры борьбы. Для профилактики болезни эффективно осеннее опрыскивание плантаций препаратом ордан. Для закладки плантаций нужно использовать оздоровленную рассаду. Болезнь реже проявляется при выращивании на высоких грядах, в подвесной и вертикальной культуре. Профилактическое опрыскивание в период весеннего отрастания листьев препаратами фалькон, эупарен, метаксил, или ридомил. При выращивании земляники в двухлетней или многолетней культуре — опрыскивание этими же препаратами после сбора ягод..

Коричневая пятнистость

Коричневая пятнистостьКоричневая пятнистость

Распространенное заболевание, вызывающее во второй половине вегетации массовое поражение

с последующим отмиранием листьев, в результате чего растения слабеют и это сказывается снижением зимостойкости растений и урожая будущего года. Поражает листья, черешки, плети усов, чашелистики, плодоножки и ягоды. Пятна на листьях образуются в июне-июле. Сначала они округлые, пурпуровые, затем в центральной части становятся серо коричневыми. По краю пятен долго сохраняется пурпуровое окаймление. Позже пятна быстро увеличиваются, распространяются вдоль жилок, между жилками или от краёв листьев к центру и приобретают угловатую форму. По жилкам и на поверхности пятен во влажную погоду в конце лета образуются пикниды гриба, образующие много конид выступающих из пикнид светлыми слизистыми усиками. На плетях усов и черешках листьев пятна коричневые, размягчающиеся, позже некротические, возникают перетяжки. На чашелистиках возникают некрозы. Зимует гриб на поражённых листьях, вызывая весной новые заражения.

Меры борьбы.Для профилактики болезни эффективно осеннее опрыскивание плантаций препаратом ордан. Для закладки плантаций нужно использовать оздоровленную рассаду. Профилактическое опрыскивание в период весеннего отрастания листьев препаратами фалькон, квадрис, метаксил, или ридомил. При выращивании земляники в двухлетней или многолетней культуре — опрыскивание этими же препаратами после сбора ягод.

Мучнистая роса

Мучнистая росаМучнистая роса

Болезнь поражает все надземные части земляники, образуя слабо заметный белый налет. Больные ягоды становятся сизоватыми, пахнут плесенью. Инфекция распространяется воздушным путем, на новые участки заносится с посадочным материалом.

Меры борьбы. Использование здорового посадочного материала. Закладка плантаций на хорошо освещенных, проветриваемых участках. Болезнь реже проявляется при выращивании на высоких грядах, в подвесной и вертикальной культуре. При выращивании в открытом грунте в зонах сильного поражения болезнью — профилактическое опрыскивание в период весеннего отрастания листьев препаратом квадрис. При появлении признаков поражения заболеванием — опрыскивание земляники после сбора ягод препаратами фундазол, свитч, байлетон.

Болезни увядания. Вертициллезное увядание
(Verticillium dahliae).

Вертициллезное увядание.Вертициллезное увядание

Серьезной проблемой при выращивании земляники во многих странах являются болезни увядания. Наиболее часто встречаются вертициллезное, фузариозное и фитофторозное увядания.

Вертициллезное увядание земляники вызывают грибы Verticillium albo-atrum Reinke et Berthold и V.dahliae Kleban. Вредоносность вертициллезного вилта проявляется в резком снижении урожая, в постепенном или быстром отмирании кустов и, как следствие, недобора усов. Выход рассады снижается на 43-90%, а урожай – на 40-70%. Пораженное растение отмирает полностью через 2-3 года.

В случае сильного распространения болезни, особенно при возделывании неустойчивых сортов, таких, как Фестивальная, отдельные плантации становятся совершенно нерентабельными или вовсе погибают.

Уровень потерь от вертициллеза зависит от степени заражения почвы патогеном и восприимчивости к заболеванию выращиваемого сорта. Вилт проявляется серьезнее там, где предшественниками земляники были сильно восприимчивые к вертициллезу культуры: томаты, перец, баклажаны, хлопчатник, картофель, малина и др. Снижают запас инфекции зерновые, зернобобовые, люцерна, горчица и сидеральные культуры. Этой болезнью поражается земляника любого возраста. Обычно болезнь начинает проявляться в конце мая – начале июня и развивается в течение всей вегетации, достигая пика в июле – сентябре, в зависимости от региона. Заражение растений земляники вертициллезом происходит через корневую систему. Внедрившись в корень, мицелий гриба проникает в проводящую систему растения, где он размножается. По мере развития заболевания корень внутри буреет и отмирает, превращаясь в сухую гниль. На нем во влажных условиях можно наблюдать спороношение белого и серого цвета.

Симптомы вертициллеза варьируют в зависимости от восприимчивости сорта, типа почвы и других факторов. На легких песчаных почвах земляника гибнет буквально за 3-4 дня, а на суглинистой и супесчаной почве – медленнее.

Хроническая форма характеризуется постепенным нарастанием симптомов болезни, проявляющихся в виде хлоротичности, отставания в росте листьев и уменьшения их количества. К концу вегетации черешки листьев слегка краснеют, растения все больше угнетаются, приобретают плоский карликовый вид и постепенно гибнут. Некоторые кусты со временем оправляются, выживая сезон, и дают новый рост весной. Эта форма характерна для сортов, обладающих устойчивостью.

Меры борьбы. Здоровы посадочный материал, севооборот, никакой картошки в предшественниках, борьба с нематодами возделыванием бархатцев.

Серая гниль
(Botrytis cinerea)

Серая гнильСерая гниль

Широко распространенная и опасная болезнь земляники. Поражает все надземные органы растения: листья, бутоны, цветки, плодоножки, завязи, ягоды. На листьях образуются крупные расплывчатые тёмно-серые загнившие пятна. На созревающих ягодах образуются бурые пятна, ткань плодов размягчается, становится дряблой, водянистой, теряет вкус, аромат, цвет. Ягоды покрываются густым серым пылящим налетом. Источник заболевания гриб паразит. Спорообразование гриба происходит при высокой относительной влажности (70-80%) и широкой амплитуде колебания температуры — от 5° до 30° C. Особенно опасно для земляники сочетание сырой и холодной погоды, это снижает устойчивость растения к заболеванию. Соприкосновение цветоносов и ягод с землёй, наличие гниющих остатков растений, гнилой соломы или опилок, больных ягод — всё это увеличивает возможность заражения. В годы с частым выпадением осадков потери урожая от этой болезни достигают 50% и более. Распространяется спорами. Инфекция сохраняется в почве и на растительных остатках.

Меры борьбы. Мульчирование соломой, увеличение расстояния между растениями, 3-4 опрыскивания средствами защиты растений в начале, середине и конце цветения, например, Сигнум, Свитч, Телдор.

Антракнозная гниль плодов
(Colletotrichum acutatum)

Антракноз земляникиАнтракноз земляники

Это опасная и очень распространенная болезнь, поражающая все растение. На листьях образуются округлые пятна, мелкие, до 3 мм в диаметре, серые в середине, окруженные пурпуровой каймой. На стеблях образуются серые пятна и мелкие глубокие язвы, окруженные широкой пурпуровой каймой. При массовом поражении пятна сливаются и стебли покрываются сплошной побуревшей, осенью сереющей, растрескивающейся тканью, что приводит к отмиранию концов побегов. Плодовые кисти, пораженные антракнозом, отмирают вместе с несозревшими ягодами, а пораженные ягоды засыхают. Возбудитель болезни зимует главным образом на пораженных побегах. Особенно сильно антракноз развивается в годы с влажной весной и летом.

Меры борьбы. Для профилактики антракноза необходимо использование для закладки плантаций только оздоровленной рассады. Болезнь реже проявляется при выращивании на высоких грядах, в подвесной и вертикальной культуре. При появлении первых признаков заболевания растений — опрыскивание препаратами антракол, метаксил, квадрис.Опрыскивание в начале закладки цветков с использованием Сигнума и Свитча.

Ризоктониоз
(Черная Корневая гниль)
(Phytophthora cactorum)

Ризоктониоз (Черная Корневая гниль)Ризоктониоз (Черная Корневая гниль)

Корневая гниль вызывается разными возбудителями. Сначала чернеют резко отграниченные участки молодых еще белых корней, затем возникают черные окольцовывающие быстрорастущие пятна. Корни становятся хрупкими, на них обнаруживаются сухие перетяжки. Такие растения теряют часть жизнеспособной корневой системы, угнетаются, плохо плодоносят, образуют слабые боковые побеги или их почти нет. Постепенно буреет нижняя часть корневища, часть розетки и черешки листьев. Образуется сухая бурая гниль, растения легко вынимаются из почвы и погибают. Заболевание распространено на индивидуальных участках с бессменной культурой земляники, а также при выращивании ее после многолетнего возделывания картофеля или овощных растений. Заболевают растения разного возраста, нобольше молодые. Проявляется гниль в течение всей вегетации.

Меры борьбы. Правильная агротехника выращивания земляники — важнейшая мера, предупреждающая возникновение болезни. Не следует возвращать землянику на то же место раньше, чем через 4-5 лет. Нельзя удобрять почву плохо приготовленными и не перепревшими компостами из растительных остатков картофеля, овощных и сорных растений, где в массе сохраняются склероции ризоктонии. Профилактическое опрыскивание с осени репаратом ордан. Весной эффективно применение триходермы через систему капельного орошения.

Фитофторозная кожистая гниль

Одно из наиболее вредоносных заболеваний земляники. Оно приводит к снижению урожая ягод на 15-20%, а в некоторых регионах отдельные годы почти к полной потере урожая. Он поражает все надземные органы растения: ягоды, бутоны, цветки, соцветия, верхушки стеблей, точки роста. Наибольший вредгриб наносит ягодам. На зрелых ягодах образуются коричневые с лиловым оттенком твердые кожистые пятна. Пораженная мякоть становится упругой и не отделяется от остальной части ягоды. Больные ягоды — горькие. Зеленые плоды покрываются светло-коричневыми пятнами с более темным центром и легкой каймой, приобретают жесткость и горький вкус. Вся пораженная ткань пронизывается мицелием гриба, там же образуются летние (зооспорангии) и покоящиеся зимние (ооспоры) споры. Постепенно ягоды ссыхаются, мумифицируются. Пятна на пораженных бутонах, цветках и соцветиях имеют неправильную форму и коричневую окраску. Наблюдается некроз точки роста, через которую гриб проникает в верхнюю часть стебля.При этом стебель буреет, отмирают основания черешков листьев и розетка куста. Гриб может проникать и в корни, но редко. На всех пораженных органах, особенно на ягодах, при влажной погоде образуется густой белый налет гриба. Развитию фитофторозной гнили способствует наличие капельно-жидкой влаги. Поэтому вспышки болезни наблюдаются после дождей и обильных рос. Проявляется заболевание в конце мая на розетках и

соцветиях, в июне оно обнаруживается на бутонах и цветках. Максимального развития фитофторозная гниль достигает в конце июня — июле, когда сильно поражаются ягоды. Зимует гриб в виде покоящихся ооспор на зараженных растительных остатках и в почве, а также в живых розетках кустов.

Меры борьбы: Использование оздоровленной рассады, соблюдение севооборота, однолетняя культура земляники, правильный режим полива и удобрений. Опрыскивание до цветения земляники препаратами метаксил, ридомил, квадрис.

Черная гниль

Поражает ягоды. Пораженные болезнью ягоды буреют, становятся водянистыми, теряют запах, вкус и покрываются вначале бесцветным, позднее темнеющим налетом, представляющим собой мицелий гриба, на котором образуются спорангии. Возбудитель болезни развивается на любом гниющем материале, образуя в пораженных тканях растений темноокрашенные шаровидной формы зигоспоры.

Развитию болезни способствуют высокая температура и относительная влажность воздуха выше 85%. Меры борьбы. Выращивание земляники в укрывной культуре, на высоких грядах, в вертикальной культуре позволяет исключить необходимость химической защиты от этого заболевания. Химические способы борьбы — осеннее опрыскивание плантации препаратом ордан, весной при активном отрастании листьев — опрыскивание препаратами эупарен, свитч.

Белая гниль

Поражает листья и ягоды. Пораженные листья вначале светлеют, затем засыхают, а в сырую погоду загнивают; больные ягоды гниют. Поверхность больных листьев и ягод покрывается белым налетом, состоящим из грибницы и образующихся на ней склероций. Грибница стойка к высыханию. В летнее время она выполняет функцию размножения гриба. Ее кусочки разносятся воздухом и, попадая в сырые места, дают вегетирующий мицелий. Зимует гриб в почве на растительных остатках в виде склероциев, на которых весной образуется белый налет грибницы. Наилучшие условия для развития белой гнили создаются при сырой и прохладной погоде, особенно в загущенных и засоренных насаждениях.

Меры борьбы.Для профилактики болезни необходимо использование для закладки плантаций только оздоровленной рассады. Болезнь, как правило, поражает растений в открытом грунте, но реже проявляется при выращивании в теплицах, на черной пленке или в подвесной и вертикальной культуре. При появлении первых признаков заболевания растений — опрыскивание препаратом дерозал.

Фитофтороз корней
(покраснение осевого цилиндра корня)

Позднее боковые корни и мелкие корешки отмирают и остаются только более крупные, почерневшие в нижней их части, похожие на «крысиный хвост». Листья пораженных болезнью растений становятся синевато-красноватыми, начиная с более старых, увядают. Молодые листья больных растений мельчают. Возбудитель сохраняется в почве в виде зооспор. Проникая в корневые волоски, зооспоры дают начало мицелию, который, разрастаясь, заполняет всю проводящую ткань корня. Мицелий бесцветный, не имеющий перегородок, межклеточный. Развивается в древесине корня. Зооспорангии образуются на поверхности пораженных корней при повышенной влажности почвы и в воде после дождей и полива. В течение всего лета они образуются в стержневом цилиндре корня, после разрушения которого споры прорастают в росток, дающий первичный зооспорангий. Основным источником инфекции являются зараженный посадочный материал и почва. Использование оздоровленной рассады, соблюдение севооборота, однолетняя культура земляники, обработка почвы триходермой через систему капельного орошения, правильный режим полива и удобрений — вот основные меры по профилактике этой болезни. При обнаружении инфекции обработки плантации препаратами метаксил, ридомил, квадрис через систему капельного орошения.

опадение, сорт, плод, этилен, ауксин, стресс-факторыВ.А. Гудковский

В.А. Гудковский, доктор сельскохозяйственных наук, академик РАСХН.

Л.В. Кожина, кандидат сельскохозяйственных наук.
А. Е. Балакирев, кандидат сельскохозяйственных наук.
Ю. Б. Назаров, кандидат сельскохозяйственных наук.
Всероссийский научно-исследовательский институт садоводства им. И.В. Мичурина, г. Мичуринск. Россия.

Снижение опадения и повышение качества плодов яблони

Введение

Одной из значимых проблем в садоводстве является преждевременное опадение плодов. Потери урожая могут достигать 20-25 % и более (рисунок 1).

По срокам проявления, опадение условно делится на 3 периода: 1) сразу после цветения (май), в этот период опадают неопыленные цветки и неоплодотворенные завязи; 2) июньское опадение (июнь) – опадают мелкие плодики с небольшими плодоножками и недостаточным количеством семян; 3) предуборочное (август, сентябрь) – связано с преждевременным изменением гормонального баланса созревающих плодов [1, 2]. В предуборочный период, как правило, опадают крупные, окрашенные плоды, а на дереве остаются зеленые и мелкие. В результате товарный вид снятого урожая ухудшается, что затрудняет его реализацию. Опавшие плоды, не способны длительно храниться и как правило их реализуют по низким ценам или используют на переработку, что также значительно снижает экономическую эффективность производства.

Предуборочное опадение плодов, усиливается неблагоприятными погодными условиями (продолжительные дожди и др.) и длительным периодом съема из-за отсутствия достаточного количества съемщиков, низким уровнем механизации, что вынуждает производителей проводить уборку урожая в ранние сроки, а это отрицательно влияет на качество и лежкоспособность плодов. Такие плоды не приобретают характерной для сорта окраски, вкуса, аромата, имеют меньший калибр, низкое содержание сухих веществ и естественных антиоксидантов, обладают повышенной восприимчивостью к болезням хранения (загар, подкожная пятнистость, внешнее СО2-повреждение, увядание).

На опадение плодов влияет множество факторов: физиологическое состояние растений, уровень нагрузки урожаем, повреждение плодов и листьев болезнями и вредителями, градом, низкое содержание углеводов, кальция, особенности анатомического строения плодоножки, количество семян, стресс-факторы (засуха, водный дефицит, переувлажнение, высокие температуры, низкие температуры и их резкие колебания), вызывающие преждевременное созревание и старение отдельных органов, пониженная интенсивность света, длина фотопериода, сильный ветер и др. [3-9].

опадение, сорт, плод, этилен, ауксин, стресс-факторыРисунок 1. Опадение плодов.

Тем не менее, процесс опадения играет важную эволюционную роль в жизни растений. Под действием комплекса стресс-факторов, вынужденное опадение плодов и листьев, обеспечивает выживание растений.

Опадение плодов и листьев связано с образованием отделительной ткани в области плодоножки и черешка, вызванное нарушением гормонального баланса в растении и плоде. В регуляции опадения значительная роль отводится этилену (индуцирует опадение) и ауксину (подавляет физиологическое действие этилена) (рисунок 2). Снижение поступления ауксина из плода в область плодоножки, а также увеличение этилена инициирует процесс отделения плода от материнского растения, путем активизации деятельности ферментов целлюлаза, пектиназа, вызывающих разрушение клеток в отделительном слое [10-12]. Поэтому, опадение плодов и листьев – это, прежде всего, нарушение баланса между ауксином и этиленом, в сторону увеличения этилена, а способствовать этому могут многие факторы, в том числе недостаточная обеспеченность ассимилянтами, кальцием, цитокининами и др. [13-15].

В 2010 г. продолжительная засуха и высокие дневные температуры (до +42оС) вызвали стресс растений и нарушение ауксин-этиленового баланса, что проявилось в подъеме уровня этилена в листьях (до 49,5 ppm — в начале августа) и последовавшего за ним преждевременного созревания и опадения плодов осенних и зимних сортов яблони. Плоды сорта Жигулевское в этот период имели очень высокий уровень эндогенного этилена (до 560 ppm), который характерен для перезревающих плодов. Следствием этого стало их преждевременное нетипичное разложение еще на дереве и опадение. Вероятно, в подобных условиях экспорт ауксинов в плодоножки резко снизился [1,2], что привело к массовому опадению плодов. При этом классический анализ степени зрелости плодов по индексу йод-крахмальной пробы показал 3 балла (по 5 бальной шкале), что свидетельствовало о пригодности плодов к длительному хранению, но не соответствовало фактическому физиологическому состоянию плодов в сложившихся стрессовых условиях.

Напряженные погодные условия вегетационного периода 2010 г. повлияли и на ростовые процессы деревьев, оказывающие значительное влияние на биосинтез и экспорт ауксина в отделительный слой и повышение биосинтеза этилена [16-17]. Именно снижение поступления ауксина и смещение баланса в сторону этилена спровоцировало наблюдаемые нарушения. Стресс-факторы способствуют нарушению гормонального, минерального, энергетического балансов, усугубляют проблему преждевременного опадения плодов.

опадение, сорт, плод, этилен, ауксин, стресс-факторыРисунок 2. Роль этилена и ауксинов в опадении плодов [3].

Актуальность проблемы обуславливает активные поиски способов продления сроков уборки плодов с сохранением их качества и минимальными потерями от преждевременного опадения.

Очевидно, что предотвращение опадения плодов возможно при поддержании достаточного уровня ауксина, в т.ч. искусственным путем, что снижает физиологическую активность этилена и, как следствие, ингибирует их опадение. Для ускорения опадения плодов, наоборот, необходимо повысить содержание этилена в растениях, что возможно путем обработки насаждений этиленпродуцентами (этефон, этрел, гидрел). Эти примеры подтверждают возможность управления процессами опадения регулированием ауксин-этиленового баланса.

Показано, что обработка деревьев синтетическими ауксинами эффективно сдерживает опадение плодов [3]. Наиболее известным препаратом данной группы является α–нафтилуксусная кислота (α –НУК). Применение препарата в промышленном производстве затруднено, что связано, в первую очередь, с медленной растворимостью в воде. В настоящее время на отечественном рынке предлагаются препараты, содержащие в своем составе α –НУК, но быстро растворимые в воде (Обстактин). Разработка технологии применения этих препаратов с учетом подбора концентраций и определения сроков обработки, сортовых особенностей и погодных условий, позволит эффективно снизить опадение плодов.

Альтернативой обработки ауксинами является применение соединений, ингибирующих образование этилена в растении и плодах (AVG – аминоэтоксивинилглицин), что позволяет замедлить созревание плодов на дереве, продлить сроки их съема с сохранением высоких товарных качеств и лежкоспособности [11].

Следует учитывать, что применение химических соединений, для предупреждения преждевременного опадения плодов, является для садоводов «вынужденной мерой», которая не всегда эффективна, особенно при отсутствии системного подхода при выращивании плодов. Оптимизация гормонального, минерального, антиоксидантного, энергетического, светового и водно-воздушного балансов в значительной мере может снизить опадение плодов или сделать этот процесс более управляемым. Эффективными агроприемами оптимизации баланса являются: использование карликовых подвоев, регуляторов роста, отгибание ветвей, регулирование нагрузки урожаем и др.. Их квалифицированное применение снижает конкуренцию за ассимилянты, кальций и повышает накопление углеводов, стимулирует рост и, как следствие, поступление ауксина в отделительный слой, тем самым сдерживая опадение плодов [11].

Во ВНИИС им. И.В. Мичурина, проводятся исследования по совершенствованию технологии производства плодов яблони в предуборочный период, с целью получения плодов высоких товарных качеств и обладающих значительной лежкоспособностью.

Материалы, условия и методы исследований

Исследования выполнены в 2004-2012 гг. Объекты исследований – деревья и плоды яблони сортов Мелба, Мечта, Жигулевское, Мартовское, Синап Орловский, выращиваемые в интенсивном саду ОПО ВНИИС им. И.В. Мичурина. Схема посадки деревьев 4,5х1,5м. Закладку опытов проводили в соответствии с методическими указаниями [18]. Обработку деревьев препаратами  проводили ранцевым опрыскивателем до полного смачивания листьев. Окрашенность плодов оценивали органолептически. Содержание этилена определяли газохроматографически [19], твердость плодов измеряли пенетрометром FT-327 с плунжером для яблок.

Результаты и обсуждение

Предуборочное опадение плодов в большей степени характерно для сортов яблони летних сроков созревания, плоды которых обладают интенсивными темпами созревания, а потери урожая могут достигать 50% и более.

Применение α-НУК в чистом виде эффективно сдерживало опадение плодов летних сортов Мечта и Мелба (таблица 1). Наибольшая эффективность достигнута при обработке деревьев за 2 недели до предполагаемой даты съема (концентрация препарата- 20 мг/л), что снизило опадение плодов сорта Мечта до 14,6% (контроль – 46,4%), сорта  Мелба до 2,6% (контроль – 28,7%).

Таблица 1 — Влияние α-НУК на предуборочное опадение плодов (2004 – 2006 гг.).

Сорт Мечта
Без обработки Контроль 46,4 100,0
За 2 недели до съёма α –НУК 10 мг/л 21,1 45,5
α –НУК 20 мг/л 14,6 31,7
За 1 неделю до съёма α –НУК 10 мг/л 22,3 48,1
α –НУК 20 мг/л 19,3 41,6
НСР05 23,9
Сорт Мелба
Без обработки Контроль 28,7 100,0
За 2 недели до съёма α –НУК 10 мг/л 5,7 19,9
α –НУК 20 мг/л 2,6 9,1
За 1 неделю до съёма α –НУК 10 мг/л 7,1 24,7
α –НУК 20 мг/л 5,1 17,8
НСР05 12,4

Сдерживание опадения плодов отмечено и при применении препарата Обстактин. На летнем сорте Мелба, максимальная  эффективность достигнута при обработке деревьев за 5 дней до предполагаемой даты съема и начала массового опадения плодов (концентрация препарата- 3 мл/10л), что снизило опадение плодов до 15,6% (контроль – 80,4%) (рисунок 3).

опадение, сорт, плод, этилен, ауксин, стресс-факторыРисунок 3. Влияние концентрации препарата Обстактин на предуборочное опадение плодов яблони (2012г.).

Сдерживание предуборочного опадения плодов летних сортов повлияло на внешний вид снятого урожая. В опытных вариантах основная масса плодов отличалась более интенсивной окраской кожицы, по сравнению с контролем (рисунок 4). Следует отметить, что необработанные плоды высокого товарного качества (размер, окраска) были больше подвержены опадению, а на деревьях оставались плоды более низкой товарной категории (мелкие, зеленые), что в меньшей степени наблюдалось на обработанных Обстактином насаждениях.

В результате проведенных исследований было показано, что после определенного периода твердость плодов опытных вариантов значительно снижается, по сравнению с контролем, хотя они удерживаются на дереве (рисунок 5). Это связано с тем, что созревающие на опытных деревьях плоды не опадали, как в контроле. В результате, при съеме большая часть опытных плодов, была более зрелой, по сравнению с контролем, так как на контрольных деревьях основная масса плодов опала, а остались более мелкие плоды.

опадение, сорт, плод, этилен, ауксин, стресс-факторыКонтроль опадение, сорт, плод, этилен, ауксин, стресс-факторыОпыт

Рисунок 4. Влияние предуборочной обработки насаждений препаратом Обстактин на товарные качества плодов сорта Мелба.

Таким образом, чрезмерное увеличение продолжительности удерживания плодов на дереве (сроков съема) за счет обработки насаждений препаратами, содержащими в своем составе α–НУК, может привести к ухудшению их товарных качеств, за счет созревания и старения. В связи с этим необходимо в предуборочный период осуществлять мониторинг физиологического состояния плодов на дереве, путем анализа твердости мякоти плодов и определения содержания эндогенного этилена. Значение показателей, установленных опытным путем, позволит эффективно определять оптимальные сроки съема плодов в обработанных насаждениях, без снижения их качества.

опадение, сорт, плод, этилен, ауксин, стресс-факторыРисунок 5. Влияние концентрации препарата Обстактин на изменение твердости мякоти плодов сорта Мелба в предуборочный период 2012 г.

Было установлено, что эффективность применение препарата Обстактин зависит от генотипа сорта, концентрации рабочего раствора и сроков сдерживания опадения плодов. Так как осенние и зимние сорта яблони обладают менее интенсивными темпами созревания, по сравнению с летними, поэтому для них представляется возможным увеличить период съема плодов, благодаря предуборочной обработке насаждений ауксинами, без ущерба качеству.

Однако, следует учитывать, что некоторые осенне-зимние сорта, такие как Орлик, Мекинтош и др., обладают интенсивными процессами созревания, выделения этилена и больше предрасположены к опадению. В отдельные годы, потери могут достигать 50% и более.

В результате исследований было установлено, что эффективная концентрация препарата Обстактин для каждого сорта строго индивидуальна, ввиду генетически обособленного гормонального баланса. По предварительным данным, для сортов Жигулевское (осеннего срока созревания) и Синап Орловский (зимнего срока созревания) наиболее эффективной оказалась концентрация препарата — 2 мл/10л, снизившая опадение в 3 и 8 раз соответственно, по сравнению с контролем. Для зимнего сорта Мартовское максимальное снижение опадения плодов (на 50%, по сравнению с контролем) было установлено при концентрации препарата 4 мл/10 л (рисунок 3). При этом было выявлено, что предуборочные обработки препаратом Обстактин не оказывают отрицательного влияния на качество плодов осенних и зимних сортов в том числе на окраску, твердость мякоти, содержание эндогенного этилена, как при съеме, так и после 3 месяцев хранения (t=2-4оС).

Аналогичные результаты были получены в южном регионе России — ЗАО «Сад-Гигант» Краснодарского края (Кладь А.А., Перепелица А.П., Олефир Е.А., Гудковский В.А.). На основе исследований, проведенных в 2009 – 2012гг. было установлено, что  применение препарата Обстактин (концентрация 3 мл/10л) сдерживало опадение плодов сорта Айдаред на 50%, по сравнению с контролем, без ухудшения товарных качеств плодов (твердость мякоти, содержание эндогенного этилена) при съеме и хранении.

Таким образом, предуборочные обработки препаратом Обстактин сдерживают опадение плодов. Эффективность обработки, ее оптимальная концентрация зависит от сортовых особенностей (в том числе гормонального, энергетического, минерального баланса и др.), погодных условий, нагрузки урожаем, других экзогенных факторов и физиологического состояние плода. Следует учитывать и роль агротехнических факторов. Такие агроприемы как отгибание ветвей, использование регуляторов роста, снижающих ростовые процессы, оптимальная нагрузка урожаем и применение клоновых подвоев, снижают опадение плодов, поддерживая оптимальный баланс ауксин-этилен [11]. В дальнейшем планируется изучение влияния указанного комплекса факторов и влияния новых препаратов и их концентраций на снижение потерь от преждевременного опадения плодов.

Выводы

— Преждевременное опадение плодов связано с нарушением ауксин-этиленового баланса в сторону увеличения содержания этилена и снижения экспорта ауксина в зону отделения плодоножки от растения.

— Некорневые обработки деревьев ауксином (α–НУК, Обстактин) в предуборочный период, сдерживают опадение плодов яблони, эффективность этого технологического приема зависит от сорта и сроков созревания.

— В связи с высокими темпами созревания плодов летних сортов яблони и короткого периода сохранения твердости плодов после обработки ауксином, требуется постоянный мониторинг их физиологического состояния, что позволит определить сроки съема плодов без снижения их качества.

— Использование препарата Обстактин на осенних и зимних сортах более эффективно (по сравнению с летними) по продолжительности сдерживания опадения плодов и в значительной мере зависит от используемых концентраций.

— Использование α–НУК, в чистом виде, на летних сорта яблони Мелба, Мечта наиболее эффективно при обработке деревьев за 2 недели до предполагаемой даты съема (концентрация препарата — 20 мг/л), что снижало опадение плодов до 14,6 и 2,6% соответственно (контроль – 46,4 и 28,7% соответственно).

— Эффективное использование α–НУК, в составе препарата Обстактин, на летнем сорте яблони – Мелба, возможно при обработке деревьев за 5 дней до предполагаемой даты съема и начала массового опадения плодов. Концентрация препарата- 3 мл/10л.

— По предварительным данным оптимальная концентрация препарата Обстактин для сортов Жигулевское (осенний) и Синап Орловский (зимний) составила — 2 мл/10л, Мартовское (зимний) – 4 мл/10л.

— Повышение эффективности снижения опадения плодов возможно при комплексном подходе к проблеме: подбор концентраций и кратности обработок препаратами, содержащими ауксины, с учетом сортовых особенностей, физиологического состояния плодов, погодных условий и использования комплекса агротехнических мероприятий.

Благодарность: работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований, грант № 12-04-97513-р_центр_а.

Литература

  1. Nelson JB, Arnold CE, Aldrich JH, Anderson LC (1984) Location of three fruit-related abscission zones in peach. J Amer Soc Hort Sci 109: 672-676.
  2. Zanchin A, Marcato С, Trainotto L, Casadoro G, Rascio N (1995) Characterization of abscission zones in the flowers and fruits of peach [Prunuspersica (L.) Batsch.]. New Phytol 129: 345-354.
  3. Тукея, Г. Регуляторы роста растений в сельском хозяйстве / Г. Тукея. – М.: Издательство иностранной литературы, 1958. – 388 с.
  4. Полевой В.В. Фитогормоны / В.В. Полевой. – Л.: Издательство Ленинградского ун-та, 1982. – 248 с.
  5. Ракитина Т.Я. Гормональные аспекты различной устойчивости мутантов Arabidopsis thaliana к ультрафиолетовой радиации / Т.Я. Ракитина, П.В. Власов, В.Ю. Ракитин // Физиология растений. 2001. Т.48. С. 421-426.
  6. Ракитин В.Ю. Выделение этилена, содержание АБК и полиаминов в Arabidopsis thaliana при УФ-В стрессе / В.Ю. Ракитин, О.Н. Прудникова, В.В. Карягин, Т.Я. Ракитина, П.В. Власов, Т.А. Борисова, Г.В. Новикова, И.Е. Мошков // Физиология растений. 2008. Т. 55. С. 355-361.
  7. Boller T. Ethylene in Pathogenesis and Disease Resistance // The Plant Hormone Ethylene // Eds Matoo A.K., Suttle J.C.. Boca Raton: CRC, 1991. P. 293-314.
  8. Шарикова Ф.М. Неспецифическая устойчивость растений к стрессовым факторам и ее регуляция. УФА: Гилем, 2001. 160с.
  9. Титов А.Ф., Акимова Т.В., Таланова В.В., Топчиева Л.В. Устойчивость растений в начальный период воздействия неблагоприятных температур. М.: Наука, 2006. 143 с.
  10. Либберт, Э. Физиология растений / Э. Либберт. — М.: «Мир», 1976. – 583 с.
  11. Tromp J. Fundamentals of temperate zone tree fruit production/ J. Tromp, A.D. Webster and S.J. Wertheim // Backhuys Publishers, Leiden, 2005. – 400 p.
  12. Bangerth F (1989) Dominance among fruit/sinks and the search for a correlative signal. Physiol Plant 76: 608-614.
  13. Byers RE (2003) Flower and fruit thinning and vegetative: fruiting balance. In: Apples, Botany, Production and Uses (Ferree DC, Warrington IJ, eds), CABI Publishing, Wallingford, UK: 409-436.
  14. Osborne DJ (1989) Abscission. Critic Rev Plant Sci 8: 103-129.
  15. Sexton R (1997) The role of ethylene and auxin in abscission. Acta Hort 463: 435-444.
  16. Bangerth F (2000) Abscission and thinning fruit and their regulation by plant hormones and bioregulators. Plant Growth Regul 32: 43-59.
  17. Untiedt R, Blanke M (2001) Effects of fruit thinning agents on apple tree canopy photosynthesis and dark respiration. Plant Growth Regul 35: 1-9.
  18. Краткие методические указания по проведению государственных испытаний регуляторов роста растений. – М.: ЦИНАО, 1984. – 42 с.
  19. Ракитин В.Ю. Определение газообмена и содержания этилена, двуокиси углерода и кислорода в тканях растений / В.Ю. Ракитин, Л.Ю. Ракитин // Физиология растений. М.: Наука – Т.33.-выпуск 2. – 1986. – С. 403-413.

Т.Г. Причко, Л.А. Хилько, М.Г. Германова
ГНУ СКЗНИИСиВ Росселъхозакадемии

УДК 664.8:634.1

В статье представлены результаты изучения качества ягод ремонтантных сортов малины, произрастающей в условиях юга России. Дана комплексная биохимическая и технологическая оценка ягод малины по товарным качествам, содержанию растворимых сухих веществ, сахаров, органических и аминокислот, витаминов, полифенолов. Выделены сорта для целенаправленного использования ягод малины при производстве варенья, компотов и продуктов заморозки.

Исследование химического состава ягод ремонтантных сортов малины, выращенной в условиях юга России

Малина — одна из ведущих ягодных культур, плоды которой обладают уникальными питательными и лечебными свойствами в свежем виде и в качестве продуктов переработки [6].

В настоящее время на юге России малина размещена в основном в индивидуальном секторе, и лишь отдельные хозяйства выращивают востребованные потребителями ягоды в производственных условиях (ЗАО «Виктория-92»).

Получить хороший урожай малины на Кубани крайне сложно из-за высоких летних температур и низкой относительной влажности воздуха. Другой причиной, сдерживающей закладку крупных плантаций малины, является значительная трудо-емкость выращивания.

Одним из направлений решения возникших в настоящее время проблем является использование ремонтантных сортов, способных формировать высокий урожай только на однолетних побегах осенью, когда спадает жара и растения получают достаточное количество влаги. В то же время по сравнению с сортами с двухлетним циклом плодоношения ремонтантные сорта малины позволяют продлить сезон потребления свежих ягод до августа — октября.

По данным И.В. Казакова, при выращивании ремонтантных сортов малины значительно упрощается весь агротехнический процесс ухода за плантацией, исключаются такие операции, как установка шпалеры, подвязка и укорачивание стеблей, а также сокращаются затраты по уходу за насаждениями. Возделывание ремонтантных сортов малины по типу однолетней культуры снимает проблему зимостойкости стеблей, а их удаление с плантации после скашивания позволяет избавиться от основных болезней и вредителей без применения пестицидов [2].

Поэтому в задачу наших исследований входило изучение качественных показателей ягод ремонтантных сортов малины, выращенной в условиях юга России.

Материалы и методы исследований

Объектами исследований служили ягоды ремонтантных сортов малины селекции ГНУ ВСТИСП Росселъхозакадемии, полученной из Кокинского опорного пункта: Бриллиантовая, Геракл, Калашник, Элегантная, Бабье лето и интродуцированного сорта Полана, завезенного из Польши.

Исследование товарных качеств ягод малины включало измерение размеров ягод (диаметр, высота) и массы. При изучении биохимического состава ягод определяли содержание растворимых сухих веществ по ГОСТ 28562; общих сахаров — по ГОСТ 8756.13; глюкозы и фруктозы — по ГОСТ Р51240; титруемых кислот — по ГОСТ 25555.0 [9]; витамина Р и антоцианов — колориметрическим методом в модификации Л.И. Вигорова [7]; витамина С — по А.Я. Трибунской; общие полифенолы — с реактивом Фолина-Дениса [4]. Содержание салициловой кислоты, свободных аминокислот определяли методом капиллярного электрофореза (система «Капель 103Р», НПФ Люмэкс, Россия) [5]. Производство консервной продукции осуществлялось по требованиям нормативной документации: варенья — по ГОСТ 53118-2008, компота — по ГОСТ 816-91, быстрозамороженных ягод — по ГОСТ 29187-91. Качество ягод после дефростации оценивали по «Методическими указаниями по проведению исследований с быстро замороженными плодами, ягодами и овощами» [3].

Результаты и обсуждения

Биологические и технологические особенности ремонтантных сортов малины в условиях юга России позволяют получать урожай от 7,5 т/га (Бабье лето) до 10,0 т/га.

Сорт Элегантная Сорт Бабье лето

рис.1. Ягоды ремонтантных сортов малины

В настоящее время на Кубани при посадке малины применяют современные интенсивные технологии с капельным орошением. Особое внимание к ремонтантным сортам малины обусловлено тем, что стоимость урожая, выращенного в осенний период превысила стоимость ягод, выращенных в начале лета по традиционной технологии, применяемой для сортов с обычным типом плодоношения. По результатам этого года средняя цена реализации малины ремонтантных сортов в осенний период составила 150 руб./кг.

Ягоды изучаемых ремонтантных сортов малины, произрастающей на юге России, различаются по величине, массе, форме, окраске, плотности сцепления костянок (рис. 1)

По крупноплодности выделены сорта Геракл, Бриллиантовая, Полана, Калашник (табл. 1).

Таблица 1

Технические показатели качества ягод ремонтантных сортов малины

Бабье лето 2,2 16,2 19,2
Калашник 2,8 17,9 19,5
Бриллиантовая з,з 20,1 18,7
Полана 2,8 20,6 18,6
Элегантная 2,0 15,3 17,9
Геракл 3,5 20,0 19,2

Вкусовые и технологические качества ягод малины во многом определяются их химическим составом. Растворимые сухие вещества ягод малины изучаемых сортов варьируют от 8,9 до 13,3 % (табл. 2).

Таблица 2

Биохимические показатели качества ягод ремонтантных сортов малины

Бабье лето 10,4 8,2 1,33 6,1 28,0 39,0 77,8
Геракл 10,8 8,5 1,72 4,9 16,3 21,6 109,1
Калашник 9,9 7,8 1,74 4,5 22,2 22,5 92,8
Элегантная 8,9 7,1 1,56 4,5 21,1 10,0 37,5
Бриллиантовая 10,6 8,4 1,34 6,3 31,9 13,0 174,0
Полана 13,3 10,3 1,38 7,5 26,4 15,4 118,2

Максимальным накоплением растворимых сухих веществ отличаются сорта Полана, Геракл, Бриллиантовая, Бабье лето. Аналогичные тенденции наблюдаются и в уровне содержания сахаров, которые почти в равном соотношении представлены в основном глюкозой и фруктозой, и в незначительном количестве — сахарозой (рис. 2).

Рис. 2. Фракционный состав сахаров ягод малины, обусловленный сортовыми особенностями

Важным компонентом, обуславливающим вкусовые качества ягод малины, являются органические кислоты, представленные на 85-90 % яблочной и незначительным количеством лимонной и янтарной кислотами [6]. Общая кислотность исследуемых сортов ягод малины в пределах 1,31 — 1,74 %, при максимальном накоплении у сортов Калашник (1,74 %) и Геракл (1,72 %).

Одним из основных качественных показателей ягод является их вкус, который обуславливается соотношением сахаров и органических кислот. Ягоды малины преимущественно обладают кисло-сладким вкусом, при этом сахаро-кислотный индекс составляет 4,5-7,5 относительных единиц в зависимости от сортовых особенностей.

Лечебные и профилактические свойства ягод малины связаны с содержанием витамина С, уровень накопления которого в условиях Кубани ниже в 1,5-2 раза по сравнению с центральной частью России и варьирует от 16,3 до 31,9 мг/100 г в зависимости от сортовых особенностей [1].

Содержание витамина Р, являющегося частью полифенольного состава ягод, изменяется в пределах от 10,0 до 39,0 мг/100г (рис. 3).

Рис. 3. Содержание витаминов в ягодах ремонтантных сортов малины

Суммарное количество полифенольных веществ варьирует от 238,2 мг/100 г (сорт Полана) до 330,1 мг/100 г (сорт Калашник).

Окраска ягод малины в значительной степени определяется состоянием зрелости, а также биологически обусловленными особенностями сортов, которые связаны с наличием антоцианов, уровень содержания которых отличается в 3-4 раза. По интенсивности окраски выделены ремонтантные сорта малины Бриллиантовая, Полана, Геракл.

На примере ягод сорта Бриллиантовая идентифицированы и другие фенольные соединения: хлорогеновая, никотиновая, оротовая, кофейная, салициловая, протокатехиновая кислоты и ресвератрол, с содержанием которых связана биологическая ценность ягод малины (рис. 4).

Рис.4. Фенольные соединения ягод малины сорта Бриллиантовая

В ягодах ремонтантных сортов малины обнаружено от 9,3 мг/100 г (сорт Полана) до 1,9 мг/100 г (сорт Бриллиантовая) салициловой кислоты, обладающей бактерицидными свойствами.

Изучалось содержание свободных аминокислот в ягодах малины на примере ремонтантных сортов Бабье лето и Полана. Наибольшее количество (61,8 мг/100 г) обнаружено в ягодах малины сорта Полана, что обуславливает их лечебную ценность (табл. 3).

Таблица 3

Содержание свободных аминокислот в ягодах ремонтантных сортов малины Бабье лето и Полана

Незаменимые
Валин 4Д7 1,28
Лизин 0,19 0,12
Лейцин 0,27 0,46
Метионин 1,36 2,98
Треонин 3,87 8,57
Фенилаланин 0,53 не обн.
Заменимые
Аланин 2,74 30,16
Аргинин 1,75 9,89
Гистидин 0,68 не обн.
Глицин 0,14 0,28
Серин 0,78 5,63
Пролин 1,77 2,41
ИТОГО 18,25 61,80

Физиология

Исследование ягод малины ремонтантных сортов в переработке при производстве варенья, компотов и продуктов быстрого замораживания позволили выделить сорта, обеспечивающие получение высококачественной готовой продукции. Сорта Бабье лето, Калашник, Полана, Геракл, с плотной ягодой кисло-сладкого вкуса и интенсивной окраской универсальны.

Полученные образцы варенья и компота из ягод данных сортов имеют выраженный аромат, яркий цвет сиропа, хорошо сохранившуюся форму ягод, что в совокупности определяет высокую дегустационную оценку 4,7-4,9 баллов.

Замороженная продукция из вышеперечисленных сортов малины после дефростации хорошо сохраняет форму, товарный вид, вкус и аромат, присущие свежим ягодам (рис. 5, 6).

Потеря сока ягодами при дефростации через 6 месяцев хранения составляет от 0,6 % сорт Полана) до 1,2 % (сорт Бабье лето). Сохранность витамина С при этом достигает 75-79 % от исходного, P-активных веществ — 90-98 %.

Выводы

  1. По крупноплодности выделены ремонтантные сорта малины Геракл, Бриллиантовая, Полана, Калашник, имеющие массу ягод 2,8-3,5 г.
  2. Высоким уровнем накопления биологически активных веществ отличаются сорта Бриллиантовая, Бабье лето, Полана, Калашник: содержание витамина С составляет 22,2-31,9 мг/100 г, P-активных веществ 10,0-39,0 мг/100г.
  3. Высококачественный готовый продукт при производстве варенья, компота и быстрой заморозке может быть получен при использовании ягод малины ремонтантных сортов Бабье лето, Калашник, Полана, Геракл.
Рис. 5. Свежие ягоды малины, (сорт Полана)
Рис. 6. Замороженные ягоды малины, (сорт Полана)

Литература

  1. Бохан И.А., Ротачев С.А. Оценка новых ремонтантных сортов малины по биохимическому составу ягод // Плодоводство и ягодоводство России: Сб. научн. работ / Т.Х1Х / ВСТИСП. — М., 2008. — С. 25-27.
  2. Казаков И.В., Евдокименко С.Н. Малина ремонтантная. — М.: ГНУ ВСТИСП, 2007. — 288 с.
  3. Методические указания по проведению исследований с быстрозамороженными плодами, ягодами и овощами. — М., 1989. — 25 с.
  4. Методические указания по химико-технологическому сортоиспытанию овощных, плодовых и ягодных культур для консервной промышленности / Редколлегия: В.Я. Бородовой и др. / ВНИИ консервной и овощесушильной промышленности. — М.: Россельхо- закадемия, 1993. — 107 с.
  5. Методическое и аналитическое обеспечение исследований по садоводству. — Краснодар, 2010. — 310 с.
  6. Причко Т.Г. и др. Особенности накопления биологически активных веществ в ягодах малины юга России // Плодоводство и ягодоводство России: Сб. науч. работ / Т.ХХ11. 4.2. / ВСТИСП. — М., 2009. — С. 367-376.
  7. Программа и методика сортоизучения плодовых, ягодных и орехоплодных культур / Редколлегия: Г.А. Лобанов и др. / ВНИИС им. Мичурина. — Мичуринск, 1973. -495 с.
  8. Программа и методика сортоизучения пло­довых, ягодных и орехоплодных культур / Под ред. Е.Н. Седова. — Орел, 1999. — 606 с.
  9. Продукты переработки плодов и овощей. Методы анализа — М.: Изд-во стандартов, 2002. — 200 с.

Публикация для портала «Деловой квартал», октябрь 2012 г.
Статья по результатам маркетинговых исследований ягодного рынка компании «Технологии Роста», www.t-rost.ru

Ягодный рынок, и особенно, рынок свежей земляники, переживает бурный рост практически во всем мире. Стимулом ежегодного расширения мировых земляничных плантаций является растущий потребительский спрос на свежие ягоды.

Однако, в отличие от России, за рубежом подавляющая часть ягод относится к промышленно культивируемым, а не выращенным на дачных участках или, тем более, диким.

Земляника садовая (Fragaria spp) является одной из наиболее значимых культур в мировом ягодоводстве. Высокий адаптивный потенциал рода земляники позволяет выращивать ее в регионах с различным климатом. В настоящее время земляника культивируется в промышленных масштабах практически во всем мире — странах Европы, Азии, Америки, Африки, Австралии. К несомненным достоинствам этой культуры следует отнести высокую рентабельность ее возделывания, вызревание в ранние сроки и десертный вкус ягод.

Экономическая значимость земляники обуславливает увеличение объема производства этой культуры. Современные производители большое внимание уделяют сортам интенсивного типа — высокопродуктивным и скороплодным, способным обеспечить гарантированный урожай ягод высокого качества.

Мировой рынок свежей земляники садовой сейчас оценивается более чем в 4 млн. тонн ягод в год. Общая стоимость ежегодных продаж свежей земляники на мировых рынках достигает 100 млн. долларов.

Ягодный рынок России (статья)Структура валового сбора свежих ягод в мире, %

Российский ягодный рынок в текущем тысячелетии практически полностью перешел на натуральное хозяйство: наши соотечественники теперь выращивают землянику, малину, смородину и крыжовник на своих дачных участках и в личных хозяйствах и для личного же потребления. Только 2 из 100 российских ягод были выращены отечественными агропредприятиями.

При этом каждая пятая ягода из рациона россиян выросла за рубежом: в Греции, Испании, Турции, Нидерландах, Польше, Украине или даже в США.

За последние 15 лет россияне больше привыкли рассчитывать на собственные силы в выращивании ягод, чем на промышленное производство и покупку ягод как, предположим, молока, рыбы или мяса.

На доступность и наличие свежих ягод в розничной торговле самым непосредственным образом влияет работа местных производителей. До недавних пор основной поток свежей товарной земляники в России обеспечивал Краснодарский край и Адыгея. 5 последних лет идет постепенное перераспределение регионов товарного выращивания земляники с юга на север и на восток. Значительная часть новых земляничных проектов, использующих инновационные агротехнологии, успешно стартовала и стартует в Центрально-Черноземном регионе РФ: Тамбовской, Воронежской, Белгородской областях.

По данным Ассоциации садоводов-питомниководов (АСП-Рус), курирующей международную программу «Земляника», уже сейчас активно эксплуатируется около 500 га земляничных плантаций по интегрированной интенсивной технологии, использующей особым образом подготовленную фриго-рассаду, специализированную автотехнику, капельный полив, высокую плотность посадки и мульчирующую пленку. Средняя урожайность ягодных культур по интенсивной технологии выращивания выше традиционной более чем в 2 раза. Для промышленного выращивания используются новые высокопродуктивные сорта ягоды, в том числе – фотонейтрального дня, плодоносящие в конце лета – начале осени. Площади ягодных посадок по традиционной технологии выращивания неуклонно сокращаются.

«Начиная с 2007 года, каждый год закладывается около 100 гектаров новых плантаций, — рассказывает ведущий специалист АСП-Рус по ягодным культурам Ольга Владимировна Жбанова. – Для них из-за рубежа ежегодно завозится по 3 – 4 миллиона штук фриго-рассады, преимущественно из Польши и Италии. Отечественные селекционные центры пока не могут удовлетворить внутренний спрос на фриго-рассаду как в количественном, так и в качественном отношении».

Самым известным российским производителем фриго-рассады является крестьянское хозяйство «Ника» в Адыгее. Руководитель «Ники», Александр Юрьевич Бота, считает, что выращивать товарную рассаду даже выгоднее чем саму ягоду. Ежегодно хозяйство продает до 1,5 млн. штук рассады своим коллегам из южного, центрального и приволжского регионов.

Ягодный рынок России (статья)Динамика промышленного сбора земляники садовой в России, тонн/год

Валовой объем промышленного производства свежей земляники по всем регионам России в текущем 2012 году достиг почти 5 тысяч тонн (расчеты «Технологии Роста» по агрегированным маркетинговым данным). Несмотря на внушительную динамику роста, промышленные производители ягод могут обеспечить пока только 2 – 3% внутреннего спроса.

Тамара В. Решетникова,
Генеральный директор консалтинговой компании «Технологии Роста»

Члены АППЯПМ
Гапоненко Николай Иванович

Гапоненко Николай Иванович

генеральный директор ЗАО «Острогожсксадпитомник» (Воронежская область)





Авторские права © 2008-2025 АППЯПМ. Все права защищены.
Запрещено использование материалов сайта без согласия его авторов и обратной ссылки.